These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 28243194)
1. Scalable, Lightweight, Integrated and Quick-to-Assemble (SLIQ) Hyperdrives for Functional Circuit Dissection. Liang L; Oline SN; Kirk JC; Schmitt LI; Komorowski RW; Remondes M; Halassa MM Front Neural Circuits; 2017; 11():8. PubMed ID: 28243194 [TBL] [Abstract][Full Text] [Related]
2. Low-cost and easy-fabrication lightweight drivable electrode array for multiple-regions electrophysiological recording in free-moving mice. Sun C; Cao Y; Huang J; Huang K; Lu Y; Zhong C J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34996053 [No Abstract] [Full Text] [Related]
3. Design and fabrication of ultralight weight, adjustable multi-electrode probes for electrophysiological recordings in mice. Brunetti PM; Wimmer RD; Liang L; Siegle JH; Voigts J; Wilson M; Halassa MM J Vis Exp; 2014 Sep; (91):e51675. PubMed ID: 25225749 [TBL] [Abstract][Full Text] [Related]
4. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning. Sato T; Suzuki T; Mabuchi K J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616 [TBL] [Abstract][Full Text] [Related]
5. Multimodal in vivo brain electrophysiology with integrated glass microelectrodes. Hunt DL; Lai C; Smith RD; Lee AK; Harris TD; Barbic M Nat Biomed Eng; 2019 Sep; 3(9):741-753. PubMed ID: 30936430 [TBL] [Abstract][Full Text] [Related]
6. Automated in vivo patch-clamp evaluation of extracellular multielectrode array spike recording capability. Allen BD; Moore-Kochlacs C; Bernstein JG; Kinney JP; Scholvin J; Seoane LF; Chronopoulos C; Lamantia C; Kodandaramaiah SB; Tegmark M; Boyden ES J Neurophysiol; 2018 Nov; 120(5):2182-2200. PubMed ID: 29995597 [TBL] [Abstract][Full Text] [Related]
7. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Robinson JT; Jorgolli M; Shalek AK; Yoon MH; Gertner RS; Park H Nat Nanotechnol; 2012 Jan; 7(3):180-4. PubMed ID: 22231664 [TBL] [Abstract][Full Text] [Related]
8. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation. Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567 [TBL] [Abstract][Full Text] [Related]
9. Construction of microdrive arrays for chronic neural recordings in awake behaving mice. Chang EH; Frattini SA; Robbiati S; Huerta PT J Vis Exp; 2013 Jul; (77):e50470. PubMed ID: 23851569 [TBL] [Abstract][Full Text] [Related]
10. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709 [TBL] [Abstract][Full Text] [Related]
11. Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity. Rios G; Lubenov EV; Chi D; Roukes ML; Siapas AG Nano Lett; 2016 Nov; 16(11):6857-6862. PubMed ID: 27766885 [TBL] [Abstract][Full Text] [Related]
12. A system for MEA-based multisite stimulation. Jimbo Y; Kasai N; Torimitsu K; Tateno T; Robinson HP IEEE Trans Biomed Eng; 2003 Feb; 50(2):241-8. PubMed ID: 12665038 [TBL] [Abstract][Full Text] [Related]
13. The flexDrive: an ultra-light implant for optical control and highly parallel chronic recording of neuronal ensembles in freely moving mice. Voigts J; Siegle JH; Pritchett DL; Moore CI Front Syst Neurosci; 2013; 7():8. PubMed ID: 23717267 [TBL] [Abstract][Full Text] [Related]
14. Miniature carrier with six independently moveable electrodes for recording of multiple single-units in the cerebellar cortex of awake rats. Vos BP; Wijnants M; Taeymans S; De Schutter E J Neurosci Methods; 1999 Dec; 94(1):19-26. PubMed ID: 10638812 [TBL] [Abstract][Full Text] [Related]
15. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice. Osanai H; Kitamura T; Yamamoto J J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259 [TBL] [Abstract][Full Text] [Related]
16. An inexpensive microdrive for chronic single-unit recording. Goldberg E; Minerbo G; Smock T Brain Res Bull; 1993; 32(3):321-3. PubMed ID: 8374810 [TBL] [Abstract][Full Text] [Related]
17. An integrated μLED optrode for optogenetic stimulation and electrical recording. Cao H; Gu L; Mohanty SK; Chiao JC IEEE Trans Biomed Eng; 2013 Jan; 60(1):225-9. PubMed ID: 22968201 [TBL] [Abstract][Full Text] [Related]
18. A Multimodal Multi-Shank Fluorescence Neural Probe for Cell-Type-Specific Electrophysiology in Multiple Regions across a Neural Circuit. Chou N; Shin H; Kim K; Chae U; Jang M; Jeong UJ; Hwang KS; Yi B; Lee SE; Woo J; Cho Y; Lee C; Baker BJ; Oh SJ; Nam MH; Choi N; Cho IJ Adv Sci (Weinh); 2022 Jan; 9(2):e2103564. PubMed ID: 34796701 [TBL] [Abstract][Full Text] [Related]