These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 28243720)

  • 1. Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration.
    Nava-Sedeño JM; Hatzikirou H; Peruani F; Deutsch A
    J Math Biol; 2017 Nov; 75(5):1075-1100. PubMed ID: 28243720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BIO-LGCA: A cellular automaton modelling class for analysing collective cell migration.
    Deutsch A; Nava-Sedeño JM; Syga S; Hatzikirou H
    PLoS Comput Biol; 2021 Jun; 17(6):e1009066. PubMed ID: 34129639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations.
    Mente C; Voss-Böhme A; Deutsch A
    Bull Math Biol; 2015 Apr; 77(4):660-97. PubMed ID: 25894920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling collective cell motion: are on- and off-lattice models equivalent?
    Nava-Sedeño JM; Voß-Böhme A; Hatzikirou H; Deutsch A; Peruani F
    Philos Trans R Soc Lond B Biol Sci; 2020 Sep; 375(1807):20190378. PubMed ID: 32713300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular automata as microscopic models of cell migration in heterogeneous environments.
    Hatzikirou H; Deutsch A
    Curr Top Dev Biol; 2008; 81():401-34. PubMed ID: 18023736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter estimation with a novel gradient-based optimization method for biological lattice-gas cellular automaton models.
    Mente C; Prade I; Brusch L; Breier G; Deutsch A
    J Math Biol; 2011 Jul; 63(1):173-200. PubMed ID: 20886214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuum approximation to an off-lattice individual-cell based model of cell migration and adhesion.
    Middleton AM; Fleck C; Grima R
    J Theor Biol; 2014 Oct; 359():220-32. PubMed ID: 24972155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Langevin equation, Fokker-Planck equation and cell migration.
    Schienbein M; Gruler H
    Bull Math Biol; 1993 May; 55(3):585-608. PubMed ID: 8364419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collective motion of dimers.
    Penington CJ; Korvasová K; Hughes BD; Landman KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051909. PubMed ID: 23214816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collective motion of binary self-propelled particle mixtures.
    Menzel AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interacting motile agents: taking a mean-field approach beyond monomers and nearest-neighbor steps.
    Penington CJ; Hughes BD; Landman KA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032714. PubMed ID: 24730881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Langevin equations for fluctuating surfaces.
    Chua AL; Haselwandter CA; Baggio C; Vvedensky DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051103. PubMed ID: 16383589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanical interplay between intra- and inter-synchronization during collective cell migration: a numerical investigation.
    Allena R; Aubry D; Sharpe J
    Bull Math Biol; 2013 Dec; 75(12):2575-99. PubMed ID: 24135793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice-gas cellular automaton models for biology: from fluids to cells.
    Chopard B; Ouared R; Deutsch A; Hatzikirou H; Wolf-Gladrow D
    Acta Biotheor; 2010 Dec; 58(4):329-40. PubMed ID: 20711745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From single cells to tissue architecture-a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems.
    Galle J; Hoffmann M; Aust G
    J Math Biol; 2009 Jan; 58(1-2):261-83. PubMed ID: 18386011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular automaton models for time-correlated random walks: derivation and analysis.
    Nava-Sedeño JM; Hatzikirou H; Klages R; Deutsch A
    Sci Rep; 2017 Dec; 7(1):16952. PubMed ID: 29209065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay Between the Persistent Random Walk and the Contact Inhibition of Locomotion Leads to Collective Cell Behaviors.
    Hassan AR; Biel T; Umulis DM; Kim T
    Bull Math Biol; 2019 Aug; 81(8):3301-3321. PubMed ID: 30788690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics.
    Matsiaka OM; Penington CJ; Baker RE; Simpson MJ
    Bull Math Biol; 2018 Apr; 80(4):738-757. PubMed ID: 29372496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice-free descriptions of collective motion with crowding and adhesion.
    Johnston ST; Simpson MJ; Plank MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062720. PubMed ID: 24483499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the derivation of approximations to cellular automata models and the assumption of independence.
    Davies KJ; Green JE; Bean NG; Binder BJ; Ross JV
    Math Biosci; 2014 Jul; 253():63-71. PubMed ID: 24769324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.