These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 28243915)
1. Proliferative and Differentiation Potential of Multipotent Mesenchymal Stem Cells Cultured on Biocompatible Polymer Scaffolds with Various Physicochemical Characteristics. Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Moskaleva EY; Chvalun SN; Severin SE Bull Exp Biol Med; 2017 Feb; 162(4):488-495. PubMed ID: 28243915 [TBL] [Abstract][Full Text] [Related]
2. Migration and Proliferative Activity of Mesenchymal Stem Cells in 3D Polylactide Scaffolds Depends on Cell Seeding Technique and Collagen Modification. Rodina AV; Tenchurin TK; Saprykin VP; Shepelev AD; Mamagulashvili VG; Grigor'ev TE; Lukanina KI; Orekhov AS; Moskaleva EY; Chvalun SN Bull Exp Biol Med; 2016 Nov; 162(1):120-126. PubMed ID: 27882461 [TBL] [Abstract][Full Text] [Related]
3. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells. V S S; P V M Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Tsai MC; Hung KC; Hung SC; Hsu SH Colloids Surf B Biointerfaces; 2015 Jan; 125():34-44. PubMed ID: 25460599 [TBL] [Abstract][Full Text] [Related]
5. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration. Ribeiro-Samy S; Silva NA; Correlo VM; Fraga JS; Pinto L; Teixeira-Castro A; Leite-Almeida H; Almeida A; Gimble JM; Sousa N; Salgado AJ; Reis RL Macromol Biosci; 2013 Nov; 13(11):1576-92. PubMed ID: 24038969 [TBL] [Abstract][Full Text] [Related]
6. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture. Theodoridis K; Aggelidou E; Manthou M; Demiri E; Bakopoulou A; Kritis A Colloids Surf B Biointerfaces; 2019 Nov; 183():110403. PubMed ID: 31400614 [TBL] [Abstract][Full Text] [Related]
7. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. Salerno A; Guarino V; Oliviero O; Ambrosio L; Domingo C Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():512-21. PubMed ID: 27040246 [TBL] [Abstract][Full Text] [Related]
8. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability. Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical characterization and biocompatibility in vitro of biphasic calcium phosphate/polyvinyl alcohol scaffolds prepared by freeze-drying method for bone tissue engineering applications. Nie L; Chen D; Suo J; Zou P; Feng S; Yang Q; Yang S; Ye S Colloids Surf B Biointerfaces; 2012 Dec; 100():169-76. PubMed ID: 22766294 [TBL] [Abstract][Full Text] [Related]
10. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. Mohan N; Nair PD; Tabata Y J Biomed Mater Res A; 2010 Jul; 94(1):146-59. PubMed ID: 20128001 [TBL] [Abstract][Full Text] [Related]
11. Effect of Concentration of Collagen Gel on Functional Activity of Bone Marrow Mesenchymal Stromal Cells. Nashchekina YA; Yudintceva NM; Nikonov PO; Ivanova EA; Smagina LV; Voronkina IV Bull Exp Biol Med; 2017 May; 163(1):123-128. PubMed ID: 28580492 [TBL] [Abstract][Full Text] [Related]
12. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Pan L; Pei X; He R; Wan Q; Wang J Colloids Surf B Biointerfaces; 2012 May; 93():226-34. PubMed ID: 22305638 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Yang XB; Bhatnagar RS; Li S; Oreffo RO Tissue Eng; 2004; 10(7-8):1148-59. PubMed ID: 15363171 [TBL] [Abstract][Full Text] [Related]
15. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
16. The precision structural regulation of PLLA porous scaffold and its influence on the proliferation and differentiation of MC3T3-E1 cells. Ge M; Xue L; Nie T; Ma H; Zhang J J Biomater Sci Polym Ed; 2016 Dec; 27(17):1685-1697. PubMed ID: 27569555 [TBL] [Abstract][Full Text] [Related]
17. Effect of micro- and macroporosity of bone tissue three-dimensional-poly(epsilon-caprolactone) scaffold on human mesenchymal stem cells invasion, proliferation, and differentiation in vitro. Salerno A; Guarnieri D; Iannone M; Zeppetelli S; Netti PA Tissue Eng Part A; 2010 Aug; 16(8):2661-73. PubMed ID: 20687813 [TBL] [Abstract][Full Text] [Related]
19. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Wang L; Wang ZH; Shen CY; You ML; Xiao JF; Chen GQ Biomaterials; 2010 Mar; 31(7):1691-8. PubMed ID: 19962755 [TBL] [Abstract][Full Text] [Related]
20. Micro-engineered 3D scaffolds for cell culture studies. Greiner AM; Richter B; Bastmeyer M Macromol Biosci; 2012 Oct; 12(10):1301-14. PubMed ID: 22965790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]