BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 28243930)

  • 1. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools.
    Iqbal N; Hossain F; Lee H; Akhter G
    Environ Monit Assess; 2017 Mar; 189(3):128. PubMed ID: 28243930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB).
    Arshad A; Mirchi A; Samimi M; Ahmad B
    Sci Total Environ; 2022 Sep; 838(Pt 2):156044. PubMed ID: 35598670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan.
    Ahmad Z; Ashraf A; Fryar A; Akhter G
    Environ Monit Assess; 2011 Feb; 173(1-4):447-57. PubMed ID: 20213054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations.
    Khorrami B; Gündüz O
    Environ Monit Assess; 2023 Jun; 195(7):868. PubMed ID: 37347293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial quantification of groundwater abstraction in the irrigated Indus basin.
    Cheema MJ; Immerzeel WW; Bastiaanssen WG
    Ground Water; 2014; 52(1):25-36. PubMed ID: 23441997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overview of terrestrial water storage changes over the Indus River Basin based on GRACE/GRACE-FO solutions.
    Zhu Y; Liu S; Yi Y; Xie F; Grünwald R; Miao W; Wu K; Qi M; Gao Y; Singh D
    Sci Total Environ; 2021 Dec; 799():149366. PubMed ID: 34352463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Satellite-based estimates of groundwater storage depletion over Egypt.
    Shalby A; Emara SR; Metwally MI; Armanuos AM; El-Agha DE; Negm AM; Gado TA
    Environ Monit Assess; 2023 Apr; 195(5):594. PubMed ID: 37079099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield.
    Dujardin J; Batelaan O; Canters F; Boel S; Anibas C; Bronders J
    Sci Total Environ; 2011 Jan; 409(4):800-9. PubMed ID: 21112074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of groundwater sustainability in the arid Hexi Corridor of Northwestern China, using GRACE, GLDAS and measured groundwater data products.
    Wang S; Liu H; Yu Y; Zhao W; Yang Q; Liu J
    Sci Total Environ; 2020 Feb; 705():135829. PubMed ID: 31972954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating groundwater resources trends through multiple conceptual models and GRACE satellite data.
    Yidana SM; Dzikunoo EA; Mejida RA; Ackom EK; Chegbeleh LP; Loh YSA; Banoeng-Yakubo BK; Akabzaa TM
    Environ Monit Assess; 2024 Feb; 196(3):290. PubMed ID: 38383814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.
    Baruffi F; Cisotto A; Cimolino A; Ferri M; Monego M; Norbiato D; Cappelletto M; Bisaglia M; Pretner A; Galli A; Scarinci A; Marsala V; Panelli C; Gualdi S; Bucchignani E; Torresan S; Pasini S; Critto A; Marcomini A
    Sci Total Environ; 2012 Dec; 440():154-66. PubMed ID: 22940008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrieving Groundwater Depletion and Drought in the Tigris-Euphrates Basin Between 2003 and 2015.
    Chao N; Luo Z; Wang Z; Jin T
    Ground Water; 2018 Sep; 56(5):770-782. PubMed ID: 29088492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin.
    Lin M; Biswas A; Bennett EM
    J Environ Manage; 2019 Apr; 235():84-95. PubMed ID: 30677659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term groundwater storage variations estimated in the Songhua River Basin by using GRACE products, land surface models, and in-situ observations.
    Chen H; Zhang W; Nie N; Guo Y
    Sci Total Environ; 2019 Feb; 649():372-387. PubMed ID: 30176450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Appraisal of the groundwater balance components from multi-remote sensing datasets in a semi-arid region.
    Rashid M; Ahmed S
    Environ Monit Assess; 2018 Oct; 190(11):681. PubMed ID: 30368603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring groundwater variation by satellite and implications for in-situ gravity measurements.
    Fukuda Y; Yamamoto K; Hasegawa T; Nakaegawa T; Nishijima J; Taniguchi M
    Sci Total Environ; 2009 Apr; 407(9):3173-80. PubMed ID: 18593639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupled Surface and Groundwater Hydrological Modeling in a Changing Climate.
    Sridhar V; Billah MM; Hildreth JW
    Ground Water; 2018 Jul; 56(4):618-635. PubMed ID: 29120480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GRACE, GLDAS and measured groundwater data products show water storage loss in Western Jilin, China.
    Moiwo JP; Lu W; Tao F
    Water Sci Technol; 2012; 65(9):1606-14. PubMed ID: 22508123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping potential groundwater-dependent ecosystems for sustainable management.
    Gou S; Gonzales S; Miller GR
    Ground Water; 2015; 53(1):99-110. PubMed ID: 24571583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.