These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 28244052)

  • 1. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.
    Brooks JC; Judd RL; Easley CJ
    Methods Mol Biol; 2017; 1566():185-201. PubMed ID: 28244052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue.
    Li X; Easley CJ
    Anal Bioanal Chem; 2018 Jan; 410(3):791-800. PubMed ID: 29214530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes.
    Godwin LA; Brooks JC; Hoepfner LD; Wanders D; Judd RL; Easley CJ
    Analyst; 2015 Feb; 140(4):1019-25. PubMed ID: 25423362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macro-to-micro interfacing to microfluidic channels using 3D-printed templates: application to time-resolved secretion sampling of endocrine tissue.
    Brooks JC; Ford KI; Holder DH; Holtan MD; Easley CJ
    Analyst; 2016 Oct; 141(20):5714-5721. PubMed ID: 27486597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-templated, fully automated microfluidic input/output multiplexer for endocrine tissue culture and secretion sampling.
    Li X; Brooks JC; Hu J; Ford KI; Easley CJ
    Lab Chip; 2017 Jan; 17(2):341-349. PubMed ID: 27990542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adipose-on-a-chip: a dynamic microphysiological in vitro model of the human adipose for immune-metabolic analysis in type II diabetes.
    Liu Y; Kongsuphol P; Chiam SY; Zhang QX; Gourikutty SBN; Saha S; Biswas SK; Ramadan Q
    Lab Chip; 2019 Jan; 19(2):241-253. PubMed ID: 30566152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D printed microfluidic perfusion device for multicellular spheroid cultures.
    Ong LJY; Islam A; DasGupta R; Iyer NG; Leo HL; Toh YC
    Biofabrication; 2017 Sep; 9(4):045005. PubMed ID: 28837043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic cell culture.
    Mehling M; Tay S
    Curr Opin Biotechnol; 2014 Feb; 25():95-102. PubMed ID: 24484886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in electric analysis of cells in microfluidic systems.
    Bao N; Wang J; Lu C
    Anal Bioanal Chem; 2008 Jun; 391(3):933-42. PubMed ID: 18335214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells.
    Ong LJY; Chong LH; Jin L; Singh PK; Lee PS; Yu H; Ananthanarayanan A; Leo HL; Toh YC
    Biotechnol Bioeng; 2017 Oct; 114(10):2360-2370. PubMed ID: 28542705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.
    Choi J; Kim S; Jung J; Lim Y; Kang K; Park S; Kang S
    Biomaterials; 2011 Oct; 32(29):7013-22. PubMed ID: 21705075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cassie-Baxter Surfaces for Reversible, Barrier-Free Integration of Microfluidics and 3D Cell Culture.
    Torabi S; Li L; Grabau J; Sands M; Berron BJ; Xu R; Trinkle CA
    Langmuir; 2019 Aug; 35(32):10299-10308. PubMed ID: 31291112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.
    Mauk MG; Liu C; Qiu X; Chen D; Song J; Bau HH
    Methods Mol Biol; 2017; 1572():467-488. PubMed ID: 28299706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of Hepatic Tissue Structures Using Interstitial Flow in a Microfluidic Device.
    Sudo R
    Methods Mol Biol; 2019; 1905():167-174. PubMed ID: 30536099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput 3D Tumor Culture in a Recyclable Microfluidic Platform.
    Liu W; Wang J
    Methods Mol Biol; 2017; 1612():293-301. PubMed ID: 28634952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes.
    Kongsuphol P; Gupta S; Liu Y; Bhuvanendran Nair Gourikutty S; Biswas SK; Ramadan Q
    Sci Rep; 2019 Mar; 9(1):4887. PubMed ID: 30894623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insert-based microfluidics for 3D cell culture with analysis.
    Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS
    Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.