BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28244157)

  • 1. From Flatland to Spaceland: Higher Dimensional Patterning with Two-Dimensional Materials.
    Chen PY; Liu M; Wang Z; Hurt RH; Wong IY
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28244157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origami and Kirigami Nanocomposites.
    Xu L; Shyu TC; Kotov NA
    ACS Nano; 2017 Aug; 11(8):7587-7599. PubMed ID: 28735531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanochemical engineering of 2D materials for multiscale biointerfaces.
    Machnicki CE; Fu F; Jing L; Chen PY; Wong IY
    J Mater Chem B; 2019 Nov; 7(41):6293-6309. PubMed ID: 31460549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Metal Oxide Topographies Replicated from Highly Textured Graphene Oxide by Intercalation Templating.
    Chen PY; Liu M; Valentin TM; Wang Z; Spitz Steinberg R; Sodhi J; Wong IY; Hurt RH
    ACS Nano; 2016 Dec; 10(12):10869-10879. PubMed ID: 28024363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanics of graphyne crumpling.
    Becton M; Zhang L; Wang X
    Phys Chem Chem Phys; 2014 Sep; 16(34):18233-40. PubMed ID: 25055042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realizing Optoelectronic Devices from Crumpled Two-Dimensional Material Heterostructures.
    Hossain MA; Yu J; van der Zande AM
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48910-48916. PubMed ID: 32975108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Three-Dimensional Sculpting of Two-Dimensional Graphene Oxide by E-Beam Direct Write.
    Kim S; Jung S; Lee J; Kim S; Fedorov AG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39595-39601. PubMed ID: 32805878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional Two-Dimensional PtSe
    Okogbue E; Han SS; Ko TJ; Chung HS; Ma J; Shawkat MS; Kim JH; Kim JH; Ji E; Oh KH; Zhai L; Lee GH; Jung Y
    Nano Lett; 2019 Nov; 19(11):7598-7607. PubMed ID: 31244238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous deformation of two-dimensional materials for emerging functionalities.
    Kim JM; Cho C; Hsieh EY; Nam S
    J Mater Res; 2020 Jun; 35(11):1369-1385. PubMed ID: 32572304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment.
    Liang Z; Pei Y; Chen C; Jiang B; Yao Y; Xie H; Jiao M; Chen G; Li T; Yang B; Hu L
    ACS Nano; 2019 Nov; 13(11):12653-12661. PubMed ID: 31584264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanically Assembled, Three-Dimensional Hierarchical Structures of Cellular Graphene with Programmed Geometries and Outstanding Electromechanical Properties.
    Ling Y; Zhuang X; Xu Z; Xie Y; Zhu X; Xu Y; Sun B; Lin J; Zhang Y; Yan Z
    ACS Nano; 2018 Dec; 12(12):12456-12463. PubMed ID: 30427653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly of Foldable 3D Microstructures Using Graphene Hinges.
    Lim S; Luan H; Zhao S; Lee Y; Zhang Y; Huang Y; Rogers JA; Ahn JH
    Adv Mater; 2020 Jul; 32(28):e2001303. PubMed ID: 32462694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels with Periodic Macropores.
    Zhu C; Liu T; Qian F; Han TY; Duoss EB; Kuntz JD; Spadaccini CM; Worsley MA; Li Y
    Nano Lett; 2016 Jun; 16(6):3448-56. PubMed ID: 26789202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, Efficient Supercapacitors.
    Chang TH; Zhang T; Yang H; Li K; Tian Y; Lee JY; Chen PY
    ACS Nano; 2018 Aug; 12(8):8048-8059. PubMed ID: 30067908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices.
    Eda A; Yasuga H; Sato T; Sato Y; Suto K; Tachi T; Iwase E
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-kirigami with giant optical chirality.
    Liu Z; Du H; Li J; Lu L; Li ZY; Fang NX
    Sci Adv; 2018 Jul; 4(7):eaat4436. PubMed ID: 29984308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene-based macroscopic assemblies and architectures: an emerging material system.
    Cong HP; Chen JF; Yu SH
    Chem Soc Rev; 2014 Nov; 43(21):7295-325. PubMed ID: 25065466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Twistable Origami and Kirigami: from Structure-Guided Smartness to Mechanical Energy Storage.
    Wang LC; Song WL; Fang D
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3450-3458. PubMed ID: 30560654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal Oxide Nanosheets as 2D Building Blocks for the Design of Novel Materials.
    Timmerman MA; Xia R; Le PTP; Wang Y; Ten Elshof JE
    Chemistry; 2020 Jul; 26(42):9084-9098. PubMed ID: 32077166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.