These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 28244158)

  • 21. Solid-State Thin-Film Supercapacitors with Ultrafast Charge/Discharge Based on N-Doped-Carbon-Tubes/Au-Nanoparticles-Doped-MnO2 Nanocomposites.
    Lv Q; Wang S; Sun H; Luo J; Xiao J; Xiao J; Xiao F; Wang S
    Nano Lett; 2016 Jan; 16(1):40-7. PubMed ID: 26599168
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Borocarbonitride-Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives.
    Radhakrishnan S; Patra A; Manasa G; Belgami MA; Mun Jeong S; Rout CS
    Adv Sci (Weinh); 2024 Jan; 11(4):e2305325. PubMed ID: 38009510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Progress of Electrode Architecture for MXene/MoS
    Kosnan MA; Azam MA; Safie NE; Munawar RF; Takasaki A
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films.
    Choi BG; Chang SJ; Kang HW; Park CP; Kim HJ; Hong WH; Lee S; Huh YS
    Nanoscale; 2012 Aug; 4(16):4983-8. PubMed ID: 22751863
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesoporous NiMoO
    He Q; Liu X; Wu X
    RSC Adv; 2024 Aug; 14(34):24749-24755. PubMed ID: 39131502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of High-Performance Asymmetric Supercapacitors Using Rice Husk-Activated Carbon and MnFe
    Ahmed F; Kumar S; Shaalan NM; Arshi N; Dalela S; Chae KH
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments.
    Liang R; Du Y; Xiao P; Cheng J; Yuan S; Chen Y; Yuan J; Chen J
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34068548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.
    El-Kady MF; Ihns M; Li M; Hwang JY; Mousavi MF; Chaney L; Lech AT; Kaner RB
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4233-8. PubMed ID: 25831542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors.
    Sundriyal P; Bhattacharya S
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Mass-Balancing between Positive and Negative Electrodes for Optimizing Energy Density of Supercapacitors.
    Jing L; Zhuo K; Sun L; Zhang N; Su X; Chen Y; Hu X; Feng R; Wang J
    J Am Chem Soc; 2024 May; 146(21):14369-14385. PubMed ID: 38718351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of 2D Materials to Potassium-Ion Hybrid Capacitors.
    Zhang D; Li L; Deng J; Gou Y; Fang J; Cui H; Zhao Y; Shang K
    ChemSusChem; 2021 May; 14(9):1974-1986. PubMed ID: 33829675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and Mechanisms of Asymmetric Supercapacitors.
    Shao Y; El-Kady MF; Sun J; Li Y; Zhang Q; Zhu M; Wang H; Dunn B; Kaner RB
    Chem Rev; 2018 Sep; 118(18):9233-9280. PubMed ID: 30204424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald-Hartwig Coupling.
    Liao Y; Wang H; Zhu M; Thomas A
    Adv Mater; 2018 Mar; 30(12):e1705710. PubMed ID: 29333630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Research Progress in MnO
    Zhang QZ; Zhang D; Miao ZC; Zhang XL; Chou SL
    Small; 2018 Jun; 14(24):e1702883. PubMed ID: 29707887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activated Microporous Carbon Derived from Almond Shells for High Energy Density Asymmetric Supercapacitors.
    Wu C; Yang S; Cai J; Zhang Q; Zhu Y; Zhang K
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15288-96. PubMed ID: 27253880
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asymmetric Supercapacitors based on 1,10-phenanthroline-5,6-dione Molecular Electrodes Paired with MXene.
    Wei Q; Meng C; Xiao LZ; He Y; Yin Q; Zhou Y; Song S; Qiang R; Yang Y; Li Z; Hu Z
    ChemSusChem; 2024 Mar; 17(6):e202301370. PubMed ID: 37962513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene supercapacitor with both high power and energy density.
    Yang H; Kannappan S; Pandian AS; Jang JH; Lee YS; Lu W
    Nanotechnology; 2017 Nov; 28(44):445401. PubMed ID: 28854156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flexible Fe
    Jiang H; Niu H; Yang X; Sun Z; Li F; Wang Q; Qu F
    Chemistry; 2018 Jul; 24(42):10683-10688. PubMed ID: 29660802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.