BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28244431)

  • 1. Compact IR synchrotron beamline design.
    Moreno T
    J Synchrotron Radiat; 2017 Mar; 24(Pt 2):386-391. PubMed ID: 28244431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new optical scheme for large-extraction small-aberration vacuum-ultraviolet synchrotron radiation beamlines.
    Moreno T
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1124-30. PubMed ID: 27577766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized IR synchrotron beamline design.
    Moreno T
    J Synchrotron Radiat; 2015 Sep; 22(5):1163-9. PubMed ID: 26289267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared.
    Levenson E; Lerch P; Martin MC
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):323-8. PubMed ID: 18552422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-aberration beamline optics for synchrotron infrared nanospectroscopy.
    Freitas RO; Deneke C; Maia FCB; Medeiros HG; Moreno T; Dumas P; Petroff Y; Westfahl H
    Opt Express; 2018 Apr; 26(9):11238-11249. PubMed ID: 29716048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First multi-bend achromat lattice consideration.
    Einfeld D; Plesko M; Schaper J
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):856-61. PubMed ID: 25177977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Sirius project.
    Liu L; Milas N; Mukai AH; Resende XR; de Sá FH
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):904-11. PubMed ID: 25177981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double bend achromat lattice for the Pohang Light Source to reduce emittance and increase number of insertion devices.
    Kim ES
    Rev Sci Instrum; 2010 Oct; 81(10):103301. PubMed ID: 21034081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DLSR design and plans: an international overview.
    Hettel R
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):843-55. PubMed ID: 25177976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a custom-made 2.8 T permanent-magnet dipole photon source for the ROCK beamline at SOLEIL.
    Brunelle P; Béchu N; Briois V; Marteau F; Ribbens M; Berteaud P; Delétoille X; Dupuy E; Herbeaux C; Labat M; Lestrade A; Nadji A; Nadolski L; Nouna M; Pruvost JB
    J Synchrotron Radiat; 2023 Jul; 30(Pt 4):695-707. PubMed ID: 37163303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The HEPS project.
    Jiao Y; Xu G; Cui XH; Duan Z; Guo YY; He P; Ji DH; Li JY; Li XY; Meng C; Peng YM; Tian SK; Wang JQ; Wang N; Wei YY; Xu HS; Yan F; Yu CH; Zhao YL; Qin Q
    J Synchrotron Radiat; 2018 Nov; 25(Pt 6):1611-1618. PubMed ID: 30407168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerator-based X-ray sources: synchrotron radiation, X-ray free electron lasers and beyond.
    Ishikawa T
    Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2147):20180231. PubMed ID: 31030654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A micro-focusing and high-flux-throughput beamline design using a bending magnet for microscopic XAFS at the High Energy Photon Source.
    Tang K; Zheng L; Zhao YD; Liu SH; Ma CY; Dong YH
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1835-1842. PubMed ID: 31490178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.
    Alcock SG; Nistea I; Sutter JP; Sawhney K; Fermé JJ; Thellièr C; Peverini L
    J Synchrotron Radiat; 2015 Jan; 22(1):10-5. PubMed ID: 25537582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of applications using diaboloid mirrors.
    Sanchez Del Rio M; Goldberg KA; Yashchuk VV; Lacey I; Padmore HA
    J Synchrotron Radiat; 2021 Jul; 28(Pt 4):1041-1049. PubMed ID: 34212867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optics Concept for a Pair of Undulator Beamlines for MX.
    Berman LE; Allaire M; Chance MR; Hendrickson WA; Héroux A; Jakoncic J; Liu Q; Orville AM; Robinson HH; Schneider DK; Shi W; Soares AS; Stojanoff V; Stoner-Ma D; Sweet RM
    Nucl Instrum Methods Phys Res A; 2011 Sep; 649(1):131-135. PubMed ID: 21822346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Commissioning and first-year operational results of the MAX IV 3 GeV ring.
    Tavares PF; Al-Dmour E; Andersson Å; Cullinan F; Jensen BN; Olsson D; Olsson DK; Sjöström M; Tarawneh H; Thorin S; Vorozhtsov A
    J Synchrotron Radiat; 2018 Sep; 25(Pt 5):1291-1316. PubMed ID: 30179168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lattice design challenges for fourth-generation storage-ring light sources.
    Borland M; Decker G; Emery L; Sajaev V; Sun Y; Xiao A
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):912-36. PubMed ID: 25177982
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first microbeam synchrotron X-ray fluorescence beamline at the Siam Photon Laboratory.
    Tancharakorn S; Tanthanuch W; Kamonsutthipaijit N; Wongprachanukul N; Sophon M; Chaichuay S; Uthaisar C; Yimnirun R
    J Synchrotron Radiat; 2012 Jul; 19(Pt 4):536-40. PubMed ID: 22713886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MAX IV storage ring project.
    Tavares PF; Leemann SC; Sjöström M; Andersson A
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):862-77. PubMed ID: 25177978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.