BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 28244592)

  • 21. Transient kinetics and rate-limiting steps for the processive cellobiohydrolase Cel7A: effects of substrate structure and carbohydrate binding domain.
    Cruys-Bagger N; Tatsumi H; Ren GR; Borch K; Westh P
    Biochemistry; 2013 Dec; 52(49):8938-48. PubMed ID: 24228828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases.
    Bu L; Crowley MF; Himmel ME; Beckham GT
    J Biol Chem; 2013 Apr; 288(17):12175-86. PubMed ID: 23504310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution structure of a lytic polysaccharide monooxygenase from
    Hansson H; Karkehabadi S; Mikkelsen N; Douglas NR; Kim S; Lam A; Kaper T; Kelemen B; Meier KK; Jones SM; Solomon EI; Sandgren M
    J Biol Chem; 2017 Nov; 292(46):19099-19109. PubMed ID: 28900033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimized mixtures of recombinant Humicola insolens cellulases for the biodegradation of crystalline cellulose.
    Boisset C; Pétrequin C; Chanzy H; Henrissat B; Schülein M
    Biotechnol Bioeng; 2001 Feb; 72(3):339-45. PubMed ID: 11135204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulases of Penicillium verruculosum.
    Morozova VV; Gusakov AV; Andrianov RM; Pravilnikov AG; Osipov DO; Sinitsyn AP
    Biotechnol J; 2010 Aug; 5(8):871-80. PubMed ID: 20540109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces.
    Szijártó N; Siika-Aho M; Tenkanen M; Alapuranen M; Vehmaanperä J; Réczey K; Viikari L
    J Biotechnol; 2008 Sep; 136(3-4):140-7. PubMed ID: 18635283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Free Energy Diagram for the Heterogeneous Enzymatic Hydrolysis of Glycosidic Bonds in Cellulose.
    Sørensen TH; Cruys-Bagger N; Borch K; Westh P
    J Biol Chem; 2015 Sep; 290(36):22203-11. PubMed ID: 26183776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the thermal stability of cellobiohydrolase Cel7A from
    Goedegebuur F; Dankmeyer L; Gualfetti P; Karkehabadi S; Hansson H; Jana S; Huynh V; Kelemen BR; Kruithof P; Larenas EA; Teunissen PJM; Ståhlberg J; Payne CM; Mitchinson C; Sandgren M
    J Biol Chem; 2017 Oct; 292(42):17418-17430. PubMed ID: 28860192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inter-domain Synergism Is Required for Efficient Feeding of Cellulose Chain into Active Site of Cellobiohydrolase Cel7A.
    Kont R; Kari J; Borch K; Westh P; Väljamäe P
    J Biol Chem; 2016 Dec; 291(50):26013-26023. PubMed ID: 27780868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent.
    Tokin R; Ipsen JØ; Westh P; Johansen KS
    Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion.
    Zhang P; Su R; Duan Y; Cui M; Huang R; Qi W; He Z; Thielemans W
    Carbohydr Polym; 2021 Feb; 253():117287. PubMed ID: 33278952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of pretreatment methods on the synergism of cellulase and xylanase during the hydrolysis of bagasse.
    Jia L; Gonçalves GA; Takasugi Y; Mori Y; Noda S; Tanaka T; Ichinose H; Kamiya N
    Bioresour Technol; 2015 Jun; 185():158-64. PubMed ID: 25768418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates.
    Kipper K; Väljamäe P; Johansson G
    Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH profiles of cellulases depend on the substrate and architecture of the binding region.
    Røjel N; Kari J; Sørensen TH; Borch K; Westh P
    Biotechnol Bioeng; 2020 Feb; 117(2):382-391. PubMed ID: 31631319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A.
    Guo J; Catchmark JM
    Biomacromolecules; 2013 May; 14(5):1268-77. PubMed ID: 23506559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding of cellulose binding modules reveal differences between cellulose substrates.
    Arola S; Linder MB
    Sci Rep; 2016 Oct; 6():35358. PubMed ID: 27748440
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical and Structural Characterizations of Two Dictyostelium Cellobiohydrolases from the Amoebozoa Kingdom Reveal a High Level of Conservation between Distant Phylogenetic Trees of Life.
    Hobdey SE; Knott BC; Haddad Momeni M; Taylor LE; Borisova AS; Podkaminer KK; VanderWall TA; Himmel ME; Decker SR; Beckham GT; Ståhlberg J
    Appl Environ Microbiol; 2016 Jun; 82(11):3395-409. PubMed ID: 27037126
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Delineating functional properties of a cello-oligosaccharide and β-glucan specific cellobiohydrolase (GH5_38): Its synergism with Cel6A and Cel7A for β-(1,3)-(1,4)-glucan degradation.
    Mafa MS; Malgas S; Rashamuse K; Pletschke BI
    Carbohydr Res; 2020 Sep; 495():108081. PubMed ID: 32738516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A pyranose dehydrogenase-based biosensor for kinetic analysis of enzymatic hydrolysis of cellulose by cellulases.
    Cruys-Bagger N; Badino SF; Tokin R; Gontsarik M; Fathalinejad S; Jensen K; Toscano MD; Sørensen TH; Borch K; Tatsumi H; Väljamäe P; Westh P
    Enzyme Microb Technol; 2014 May; 58-59():68-74. PubMed ID: 24731827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.