These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Nakashima RA; Paggi MG; Pedersen PL Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833 [TBL] [Abstract][Full Text] [Related]
4. Effects of sorafenib on energy metabolism in breast cancer cells: role of AMPK-mTORC1 signaling. Fumarola C; Caffarra C; La Monica S; Galetti M; Alfieri RR; Cavazzoni A; Galvani E; Generali D; Petronini PG; Bonelli MA Breast Cancer Res Treat; 2013 Aug; 141(1):67-78. PubMed ID: 23963659 [TBL] [Abstract][Full Text] [Related]
5. Cytotoxic activity of nemorosone in neuroblastoma cells. Díaz-Carballo D; Malak S; Bardenheuer W; Freistuehler M; Reusch HP J Cell Mol Med; 2008 Dec; 12(6B):2598-608. PubMed ID: 18194446 [TBL] [Abstract][Full Text] [Related]
6. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Dal-Cim T; Molz S; Egea J; Parada E; Romero A; Budni J; Martín de Saavedra MD; del Barrio L; Tasca CI; López MG Neurochem Int; 2012 Aug; 61(3):397-404. PubMed ID: 22683349 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells. Scotland S; Saland E; Skuli N; de Toni F; Boutzen H; Micklow E; Sénégas I; Peyraud R; Peyriga L; Théodoro F; Dumon E; Martineau Y; Danet-Desnoyers G; Bono F; Rocher C; Levade T; Manenti S; Junot C; Portais JC; Alet N; Récher C; Selak MA; Carroll M; Sarry JE Leukemia; 2013 Nov; 27(11):2129-38. PubMed ID: 23568147 [TBL] [Abstract][Full Text] [Related]
8. D-(+)-glucose rescue against 1-methyl-4-phenylpyridinium toxicity through anaerobic glycolysis in neuroblastoma cells. Mazzio E; Soliman KF Brain Res; 2003 Feb; 962(1-2):48-60. PubMed ID: 12543455 [TBL] [Abstract][Full Text] [Related]
9. The combination of the novel glycolysis inhibitor 3-BrOP and rapamycin is effective against neuroblastoma. Levy AG; Zage PE; Akers LJ; Ghisoli ML; Chen Z; Fang W; Kannan S; Graham T; Zeng L; Franklin AR; Huang P; Zweidler-McKay PA Invest New Drugs; 2012 Feb; 30(1):191-9. PubMed ID: 20890785 [TBL] [Abstract][Full Text] [Related]
10. Effects of mitochondrial inhibitors on cell viability in U937 monocytes under glucose deprivation. Han M; Im DS Arch Pharm Res; 2008 Jun; 31(6):749-57. PubMed ID: 18563357 [TBL] [Abstract][Full Text] [Related]
11. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
12. Interferon-β induces apoptosis in human SH-SY5Y neuroblastoma cells through activation of JAK-STAT signaling and down-regulation of PI3K/Akt pathway. Dedoni S; Olianas MC; Onali P J Neurochem; 2010 Dec; 115(6):1421-33. PubMed ID: 21044071 [TBL] [Abstract][Full Text] [Related]
13. Effects of enhancing mitochondrial oxidative phosphorylation with reducing equivalents and ubiquinone on 1-methyl-4-phenylpyridinium toxicity and complex I-IV damage in neuroblastoma cells. Mazzio EA; Soliman KF Biochem Pharmacol; 2004 Mar; 67(6):1167-84. PubMed ID: 15006552 [TBL] [Abstract][Full Text] [Related]
14. Resveratrol augments ER stress and the cytotoxic effects of glycolytic inhibition in neuroblastoma by downregulating Akt in a mechanism independent of SIRT1. Graham RM; Hernandez F; Puerta N; De Angulo G; Webster KA; Vanni S Exp Mol Med; 2016 Feb; 48(2):e210. PubMed ID: 26891914 [TBL] [Abstract][Full Text] [Related]
15. Acetaldehyde promotes rapamycin-dependent activation of p70(S6K) and glucose uptake despite inhibition of Akt and mTOR in dopaminergic SH-SY5Y human neuroblastoma cells. Fang CX; Yang X; Sreejayan N; Ren J Exp Neurol; 2007 Jan; 203(1):196-204. PubMed ID: 16962100 [TBL] [Abstract][Full Text] [Related]
16. Cancer Stem Cells in Small Cell Lung Cancer Cell Line H446: Higher Dependency on Oxidative Phosphorylation and Mitochondrial Substrate-Level Phosphorylation than Non-Stem Cancer Cells. Gao C; Shen Y; Jin F; Miao Y; Qiu X PLoS One; 2016; 11(5):e0154576. PubMed ID: 27167619 [TBL] [Abstract][Full Text] [Related]
17. Protective effects of DJ-1 medicated Akt phosphorylation on mitochondrial function are promoted by Da-Bu-Yin-Wan in 1-methyl-4-phenylpyridinium-treated human neuroblastoma SH-SY5Y cells. Zhang Y; Gong XG; Wang ZZ; Sun HM; Guo ZY; Gai C; Hu JH; Ma L; Li P; Chen NH J Ethnopharmacol; 2016 Jul; 187():83-93. PubMed ID: 27114059 [TBL] [Abstract][Full Text] [Related]
18. FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma. Santo EE; Stroeken P; Sluis PV; Koster J; Versteeg R; Westerhout EM Cancer Res; 2013 Apr; 73(7):2189-98. PubMed ID: 23378341 [TBL] [Abstract][Full Text] [Related]
19. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Xun Z; Lee DY; Lim J; Canaria CA; Barnebey A; Yanonne SM; McMurray CT Mech Ageing Dev; 2012 Apr; 133(4):176-85. PubMed ID: 22336883 [TBL] [Abstract][Full Text] [Related]