These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Metformin Reduces Prostate Tumor Growth, in a Diet-Dependent Manner, by Modulating Multiple Signaling Pathways. Sarmento-Cabral A; L-López F; Gahete MD; Castaño JP; Luque RM Mol Cancer Res; 2017 Jul; 15(7):862-874. PubMed ID: 28385910 [TBL] [Abstract][Full Text] [Related]
3. Adipokines and Their Receptors Are Widely Expressed and Distinctly Regulated by the Metabolic Environment in the Prostate of Male Mice: Direct Role Under Normal and Tumoral Conditions. Sarmento-Cabral A; L-López F; Luque RM Endocrinology; 2017 Oct; 158(10):3540-3552. PubMed ID: 28938461 [TBL] [Abstract][Full Text] [Related]
5. Impact of obesity on the growth hormone axis: evidence for a direct inhibitory effect of hyperinsulinemia on pituitary function. Luque RM; Kineman RD Endocrinology; 2006 Jun; 147(6):2754-63. PubMed ID: 16513828 [TBL] [Abstract][Full Text] [Related]
6. The intrahepatic biliary epithelium is a target of the growth hormone/insulin-like growth factor 1 axis. Alvaro D; Metalli VD; Alpini G; Onori P; Franchitto A; Barbaro B; Glaser SS; Francis H; Cantafora A; Blotta I; Attili AF; Gaudio E J Hepatol; 2005 Nov; 43(5):875-83. PubMed ID: 16083987 [TBL] [Abstract][Full Text] [Related]
7. Identification of UDP-Glucuronosyltransferase 2B15 (UGT2B15) as a Target for IGF1 and Insulin Action. Sarfstein R; Nagaraj K; Parikh S; Levy C; Laron Z; Benayahu D; Werner H Cells; 2022 May; 11(10):. PubMed ID: 35626664 [TBL] [Abstract][Full Text] [Related]
8. Obesity- and gender-dependent role of endogenous somatostatin and cortistatin in the regulation of endocrine and metabolic homeostasis in mice. Luque RM; Cordoba-Chacon J; Pozo-Salas AI; Porteiro B; de Lecea L; Nogueiras R; Gahete MD; Castaño JP Sci Rep; 2016 Nov; 6():37992. PubMed ID: 27901064 [TBL] [Abstract][Full Text] [Related]
9. High fat-induced obesity associated with insulin-resistance increases FGF-2 content and causes stromal hyperplasia in rat ventral prostate. Ribeiro DL; Pinto ME; Maeda SY; Taboga SR; Góes RM Cell Tissue Res; 2012 Aug; 349(2):577-88. PubMed ID: 22661309 [TBL] [Abstract][Full Text] [Related]
10. High-fat diet-induced hyperinsulinemia promotes the development of prostate adenocarcinoma in prostate-specific Pten-/- mice. Wang H; Yan W; Sun Y; Yang CS Carcinogenesis; 2022 Jun; 43(5):504-516. PubMed ID: 35104315 [TBL] [Abstract][Full Text] [Related]
11. Type II SOCS as a feedback repressor for GH-induced Igf1 expression in carp hepatocytes. Jiang X; Xiao J; He M; Ma A; Wong AO J Endocrinol; 2016 May; 229(2):171-86. PubMed ID: 27271287 [TBL] [Abstract][Full Text] [Related]
12. Estrogen receptor alpha is essential for the proliferation of prostatic smooth muscle cells stimulated by 17β-estradiol and insulin-like growth factor 1. Zhou D; Li S; Wang X; Cheng B; Ding X Cell Biochem Funct; 2011 Mar; 29(2):120-5. PubMed ID: 21287577 [TBL] [Abstract][Full Text] [Related]
13. TRAMP prostate tumor growth is slowed by walnut diets through altered IGF-1 levels, energy pathways, and cholesterol metabolism. Kim H; Yokoyama W; Davis PA J Med Food; 2014 Dec; 17(12):1281-6. PubMed ID: 25354213 [TBL] [Abstract][Full Text] [Related]
14. Expression of the growth hormone/insulin-like growth factor axis during Balb/c thymus ontogeny and effects of growth hormone upon ex vivo T cell differentiation. Kermani H; Goffinet L; Mottet M; Bodart G; Morrhaye G; Dardenne O; Renard C; Overbergh L; Baron F; Beguin Y; Geenen V; Martens HJ Neuroimmunomodulation; 2012; 19(3):137-47. PubMed ID: 22261974 [TBL] [Abstract][Full Text] [Related]
15. Crosstalk of humoral and cell-cell contact-mediated signals in postnatal body growth. Jing X; Miyajima M; Sawada T; Chen Q; Iida K; Furushima K; Arai D; Chihara K; Sakaguchi K Cell Rep; 2012 Sep; 2(3):652-65. PubMed ID: 22999939 [TBL] [Abstract][Full Text] [Related]
16. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Lupu F; Terwilliger JD; Lee K; Segre GV; Efstratiadis A Dev Biol; 2001 Jan; 229(1):141-62. PubMed ID: 11133160 [TBL] [Abstract][Full Text] [Related]
17. Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1. Mah AT; Van Landeghem L; Gavin HE; Magness ST; Lund PK Endocrinology; 2014 Sep; 155(9):3302-14. PubMed ID: 24914941 [TBL] [Abstract][Full Text] [Related]
18. A high-fat diet enhances proliferation of prostate cancer cells and activates MCP-1/CCR2 signaling. Huang M; Narita S; Numakura K; Tsuruta H; Saito M; Inoue T; Horikawa Y; Tsuchiya N; Habuchi T Prostate; 2012 Dec; 72(16):1779-88. PubMed ID: 22514016 [TBL] [Abstract][Full Text] [Related]
19. Effect of isocaloric low-fat diet on human LAPC-4 prostate cancer xenografts in severe combined immunodeficient mice and the insulin-like growth factor axis. Ngo TH; Barnard RJ; Cohen P; Freedland S; Tran C; deGregorio F; Elshimali YI; Heber D; Aronson WJ Clin Cancer Res; 2003 Jul; 9(7):2734-43. PubMed ID: 12855654 [TBL] [Abstract][Full Text] [Related]
20. Defining human insulin-like growth factor I gene regulation. Mukherjee A; Alzhanov D; Rotwein P Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E519-29. PubMed ID: 27406741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]