These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28244747)

  • 1. Rapid Iron Reduction Rates Are Stimulated by High-Amplitude Redox Fluctuations in a Tropical Forest Soil.
    Ginn B; Meile C; Wilmoth J; Tang Y; Thompson A
    Environ Sci Technol; 2017 Mar; 51(6):3250-3259. PubMed ID: 28244747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Fluctuations Control the Coupled Cycling of Iron and Carbon in Tropical Forest Soils.
    Bhattacharyya A; Campbell AN; Tfaily MM; Lin Y; Kukkadapu RK; Silver WL; Nico PS; Pett-Ridge J
    Environ Sci Technol; 2018 Dec; 52(24):14129-14139. PubMed ID: 30451506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pO
    Chen C; Meile C; Wilmoth J; Barcellos D; Thompson A
    Environ Sci Technol; 2018 Jul; 52(14):7709-7719. PubMed ID: 29890827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2014 Oct; 48(19):11320-9. PubMed ID: 25243611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient O
    Wilmoth JL; Moran MA; Thompson A
    Microbiome; 2018 Oct; 6(1):189. PubMed ID: 30352628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.
    Hall SJ; Silver WL
    Glob Chang Biol; 2013 Sep; 19(9):2804-13. PubMed ID: 23606589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid-Phase Fe Speciation along the Vertical Redox Gradients in Floodplains using XAS and Mössbauer Spectroscopies.
    Chen C; Kukkadapu RK; Lazareva O; Sparks DL
    Environ Sci Technol; 2017 Jul; 51(14):7903-7912. PubMed ID: 28617593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.
    Heiberg L; Koch CB; Kjaergaard C; Jensen HS; Hans Christian BH
    J Environ Qual; 2012; 41(3):938-49. PubMed ID: 22565275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High potential for iron reduction in upland soils.
    Yang WH; Liptzin D
    Ecology; 2015 Jul; 96(7):2015-20. PubMed ID: 26378323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of phosphate sorption in lowland soils under oxic and anoxic conditions.
    Heiberg L; Pedersen TV; Jensen HS; Kjaergaard C; Hansen HC
    J Environ Qual; 2010; 39(2):734-43. PubMed ID: 20176846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biostimulation of iron reduction and subsequent oxidation of sediment containing Fe-silicates and Fe-oxides: effect of redox cycling on Fe(III) bioreduction.
    Komlos J; Kukkadapu RK; Zachara JM; Jaffé PR
    Water Res; 2007 Jul; 41(13):2996-3004. PubMed ID: 17467035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Properties of Solid Phase Electron Acceptors Affect Anaerobic Microbial Respiration under Oxygen-Limited Conditions in Floodplain Soils.
    Aeppli M; Thompson A; Dewey C; Fendorf S
    Environ Sci Technol; 2022 Dec; 56(23):17462-17470. PubMed ID: 36342198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes and relations of photosynthesis and iron cycling in anoxic paddy soil amended with high concentrations of sulfate.
    Chen Q; Jia R; Qu D; Li M
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11425-11434. PubMed ID: 28316044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloid mobilization during soil iron redox oscillations.
    Thompson A; Chadwick OA; Boman S; Chorover J
    Environ Sci Technol; 2006 Sep; 40(18):5743-9. PubMed ID: 17007135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions.
    Nedel S; Dideriksen K; Christiansen BC; Bovet N; Stipp SL
    Environ Sci Technol; 2010 Jun; 44(12):4493-8. PubMed ID: 20496931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation, reactivity and aging of amorphous ferric oxides in the presence of model and membrane bioreactor derived organics.
    Bligh MW; Maheshwari P; David Waite T
    Water Res; 2017 Nov; 124():341-352. PubMed ID: 28780358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.
    Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T
    Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of soil redox conditions in microbial phosphorus cycling in humid tropical forests.
    Gross A; Lin Y; Weber PK; Pett-Ridge J; Silver WL
    Ecology; 2020 Feb; 101(2):e02928. PubMed ID: 31715005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Manganese Oxide on Arsenic Reduction and Leaching from Contaminated Floodplain Soil.
    Ehlert K; Mikutta C; Kretzschmar R
    Environ Sci Technol; 2016 Sep; 50(17):9251-61. PubMed ID: 27508335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.