These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 28245199)
1. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Youssef A; Hollister SJ; Dalton PD Biofabrication; 2017 Feb; 9(1):012002. PubMed ID: 28245199 [TBL] [Abstract][Full Text] [Related]
2. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine. Shirwaiker RA; Fisher MB; Anderson B; Schuchard KG; Warren PB; Maze B; Grondin P; Ligler FS; Pourdeyhimi B Tissue Eng Part C Methods; 2020 Jul; 26(7):364-374. PubMed ID: 32552453 [TBL] [Abstract][Full Text] [Related]
3. Additive Manufacturing Using Melt Extruded Thermoplastics for Tissue Engineering. Calore AR; Sinha R; Harings J; Bernaerts KV; Mota C; Moroni L Methods Mol Biol; 2021; 2147():75-99. PubMed ID: 32840812 [TBL] [Abstract][Full Text] [Related]
4. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
5. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. Wunner FM; Bas O; Saidy NT; Dalton PD; Pardo EMD; Hutmacher DW J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364204 [TBL] [Abstract][Full Text] [Related]
6. Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing. Hochleitner G; Jüngst T; Brown TD; Hahn K; Moseke C; Jakob F; Dalton PD; Groll J Biofabrication; 2015 Jun; 7(3):035002. PubMed ID: 26065373 [TBL] [Abstract][Full Text] [Related]
7. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
8. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants. Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506 [TBL] [Abstract][Full Text] [Related]
9. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. Bolle ECL; Nicdao D; Dalton PD; Dargaville TR Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814 [TBL] [Abstract][Full Text] [Related]
11. Conductive Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges from Biomaterials and Manufacturing Perspectives. Marsudi MA; Ariski RT; Wibowo A; Cooper G; Barlian A; Rachmantyo R; Bartolo PJDS Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768972 [TBL] [Abstract][Full Text] [Related]
12. 4D Biofabrication Using a Combination of 3D Printing and Melt-Electrowriting of Shape-Morphing Polymers. Constante G; Apsite I; Alkhamis H; Dulle M; Schwarzer M; Caspari A; Synytska A; Salehi S; Ionov L ACS Appl Mater Interfaces; 2021 Mar; 13(11):12767-12776. PubMed ID: 33389997 [TBL] [Abstract][Full Text] [Related]
13. Current state of fabrication technologies and materials for bone tissue engineering. Wubneh A; Tsekoura EK; Ayranci C; Uludağ H Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515 [TBL] [Abstract][Full Text] [Related]
14. 3D Printing Polymers with Supramolecular Functionality for Biological Applications. Pekkanen AM; Mondschein RJ; Williams CB; Long TE Biomacromolecules; 2017 Sep; 18(9):2669-2687. PubMed ID: 28762718 [TBL] [Abstract][Full Text] [Related]
15. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088 [TBL] [Abstract][Full Text] [Related]
16. Additive manufacturing techniques for the production of tissue engineering constructs. Mota C; Puppi D; Chiellini F; Chiellini E J Tissue Eng Regen Med; 2015 Mar; 9(3):174-90. PubMed ID: 23172792 [TBL] [Abstract][Full Text] [Related]
17. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068 [TBL] [Abstract][Full Text] [Related]
19. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325 [TBL] [Abstract][Full Text] [Related]
20. Development of a solvent-free polylactide/calcium carbonate composite for selective laser sintering of bone tissue engineering scaffolds. Gayer C; Ritter J; Bullemer M; Grom S; Jauer L; Meiners W; Pfister A; Reinauer F; Vučak M; Wissenbach K; Fischer H; Poprawe R; Schleifenbaum JH Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():660-673. PubMed ID: 31029360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]