These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28245651)

  • 21. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insights into the resistance of phospholipid heads to the membrane penetration of graphene nanosheets.
    Li Z; Zhu X; Li J; Zhong J; Zhang J; Fan J
    Nanoscale; 2022 Apr; 14(14):5384-5391. PubMed ID: 35319035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets.
    Mao J; Guo R; Yan LT
    Biomaterials; 2014 Jul; 35(23):6069-77. PubMed ID: 24780168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of canine coagulation factor VII and its complex formation with tissue factor: canine-human cross-species compatibility.
    Knudsen T; Kristensen AT; Sørensen BB; Olsen OH; Stennicke HR; Petersen LC
    J Thromb Haemost; 2010 Aug; 8(8):1763-72. PubMed ID: 20524980
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of Substrate Hydrophilicity on Structural Properties of Supported Lipid Systems on Graphene, Graphene Oxides, and Silica.
    Savenko M; Rivel T; Yesylevskyy S; Ramseyer C
    J Phys Chem B; 2021 Jul; 125(29):8060-8074. PubMed ID: 34284579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Probing Structural Dynamics and Topology of the KCNE1 Membrane Protein in Lipid Bilayers via Site-Directed Spin Labeling and Electron Paramagnetic Resonance Spectroscopy.
    Sahu ID; Craig AF; Dunagan MM; Troxel KR; Zhang R; Meiberg AG; Harmon CN; McCarrick RM; Kroncke BM; Sanders CR; Lorigan GA
    Biochemistry; 2015 Oct; 54(41):6402-12. PubMed ID: 26418890
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interactions of the fatty acid-binding protein ReP1-NCXSQ with lipid membranes. Influence of the membrane electric field on binding and orientation.
    Galassi VV; Villarreal MA; Posada V; Montich GG
    Biochim Biophys Acta; 2014 Mar; 1838(3):910-20. PubMed ID: 24269200
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence for phospholipid microdomain formation in liquid crystalline liposomes reconstituted with Escherichia coli lactose permease.
    Lehtonen JY; Kinnunen PK
    Biophys J; 1997 Mar; 72(3):1247-57. PubMed ID: 9138570
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interaction of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled fatty amines with 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine bilayers: a molecular dynamics study.
    Filipe HA; Moreno MJ; Loura LM
    J Phys Chem B; 2011 Aug; 115(33):10109-19. PubMed ID: 21749140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is tissue factor the 'original sin' of clotting, or is it factor VII?
    Rickles FR
    J Thromb Haemost; 2007 Jul; 5(7):1401-2. PubMed ID: 17635697
    [No Abstract]   [Full Text] [Related]  

  • 33. Membrane Fluidity Modulates Thermal Stability and Ligand Binding of Cytochrome P4503A4 in Lipid Nanodiscs.
    McClary WD; Sumida JP; Scian M; Paço L; Atkins WM
    Biochemistry; 2016 Nov; 55(45):6258-6268. PubMed ID: 27782404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In silico free energy predictions for ionic liquid-assisted exfoliation of a graphene bilayer into individual graphene nanosheets.
    Kamath G; Baker GA
    Phys Chem Chem Phys; 2012 Jun; 14(22):7929-33. PubMed ID: 22552225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular insight into the effect of lipid bilayer environments on thrombospondin-1 and calreticulin interactions.
    Wang L; Murphy-Ullrich JE; Song Y
    Biochemistry; 2014 Oct; 53(40):6309-22. PubMed ID: 25260145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential interference of graphene nanosheets in immune response
    Ye R; Song W; Feng M; Zhou R
    Nanoscale; 2021 Nov; 13(45):19255-19263. PubMed ID: 34787621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isothermal titration calorimetry studies of the binding of a rationally designed analogue of the antimicrobial peptide gramicidin s to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Feb; 44(6):2103-12. PubMed ID: 15697236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions.
    Luan B; Huynh T; Zhao L; Zhou R
    ACS Nano; 2015 Jan; 9(1):663-9. PubMed ID: 25494677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake.
    Zhang H; Peng C; Yang J; Lv M; Liu R; He D; Fan C; Huang Q
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1761-7. PubMed ID: 23402618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study.
    Rahmanpour A; Ghahremanpour MM; Mehrnejad F; Moghaddam ME
    J Biomol Struct Dyn; 2013 Dec; 31(12):1393-403. PubMed ID: 23140320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.