These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. Shen XJ; Chen JC; Cao LJ; Ma ZZ; Sun LN; Gao YF; Ma LJ; Wang JX; Ren YJ; Cao HQ; Gong YJ; Hoffmann AA; Wei SJ Pest Manag Sci; 2023 Sep; 79(9):3218-3226. PubMed ID: 37042232 [TBL] [Abstract][Full Text] [Related]
7. Agronomically important thrips: development of species-specific primers in multiplex PCR and microarray assay using internal transcribed spacer 1 (ITS1) sequences for identification. Yeh WB; Tseng MJ; Chang NT; Wu SY; Tsai YS Bull Entomol Res; 2015 Feb; 105(1):52-9. PubMed ID: 25335450 [TBL] [Abstract][Full Text] [Related]
8. Molecular Identification of Thrips Species Infesting Cotton in the Southeastern United States. Wang H; Kennedy GG; Reay-Jones FPF; Reisig DD; Toews MD; Roberts PM; Herbert DA; Taylor S; Jacobson AL; Greene JK J Econ Entomol; 2018 Apr; 111(2):892-898. PubMed ID: 29506223 [TBL] [Abstract][Full Text] [Related]
9. A rapid field-based assay using recombinase polymerase amplification for identification of Priti ; Jangra S; Baranwal VK; Dietzgen RG; Ghosh A J Pest Sci (2004); 2021; 94(2):219-229. PubMed ID: 33046966 [No Abstract] [Full Text] [Related]
10. Application of cytochrome oxidase I sequences for phylogenetic analysis and identification of thrips species occurring on vegetable crops. Kadirvel P; Srinivasan R; Hsu YC; Su FC; De La Peña R J Econ Entomol; 2013 Feb; 106(1):408-18. PubMed ID: 23448058 [TBL] [Abstract][Full Text] [Related]
11. From laboratory to point of entry: development and implementation of a loop-mediated isothermal amplification (LAMP)-based genetic identification system to prevent introduction of quarantine insect species. Blaser S; Diem H; von Felten A; Gueuning M; Andreou M; Boonham N; Tomlinson J; Müller P; Utzinger J; Frey JE; Bühlmann A Pest Manag Sci; 2018 Jun; 74(6):1504-1512. PubMed ID: 29363271 [TBL] [Abstract][Full Text] [Related]
12. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. Catto MA; Labadie PE; Jacobson AL; Kennedy GG; Srinivasan R; Hunt BG BMC Genomics; 2023 Jun; 24(1):343. PubMed ID: 37344773 [TBL] [Abstract][Full Text] [Related]
14. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a Promising Repellent Plant for Thrips Management. Li XW; Zhang ZJ; Hafeez M; Huang J; Zhang JM; Wang LK; Lu YB J Econ Entomol; 2021 Feb; 114(1):131-141. PubMed ID: 33346361 [TBL] [Abstract][Full Text] [Related]
15. Within-Plant Distribution and Dynamics of Thrips Species (Thysanoptera: Thripidae) in Cotton. Reay-Jones FPF; Greene JK; Herbert DA; Jacobson AL; Kennedy GG; Reisig DD; Roberts PM J Econ Entomol; 2017 Aug; 110(4):1563-1575. PubMed ID: 28475718 [TBL] [Abstract][Full Text] [Related]
16. Effects of single and dual species herbivory on the behavioral responses of three thrips species to cotton seedlings. Silva R; Walter GH; Wilson LJ; Furlong MJ Insect Sci; 2017 Aug; 24(4):684-698. PubMed ID: 27029603 [TBL] [Abstract][Full Text] [Related]
17. Effect of watermelon silver mottle virus on the life history and feeding preference of Thrips palmi. Chen WT; Tseng CH; Tsai CW PLoS One; 2014; 9(7):e102021. PubMed ID: 25010157 [TBL] [Abstract][Full Text] [Related]
18. Synergistic Effects of the Red Light and Blue Traps on Control of Thrips palmi (Thysanoptera: Thripidae). Murata M; Yamahama Y; Hariyama T J Econ Entomol; 2021 Apr; 114(2):627-631. PubMed ID: 33474561 [TBL] [Abstract][Full Text] [Related]