These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 2824645)
1. Murine glia cells in culture can be stimulated to generate reactive oxygen. Sonderer B; Wild P; Wyler R; Fontana A; Peterhans E; Schwyzer M J Leukoc Biol; 1987 Nov; 42(5):463-73. PubMed ID: 2824645 [TBL] [Abstract][Full Text] [Related]
2. The effect of sodium azide on the chemiluminescence of granulocytes--evidence for the generation of multiple oxygen radicals. Sagone AL; Mendelson DS; Metz EN J Lab Clin Med; 1977 Jun; 89(6):1333-40. PubMed ID: 194005 [TBL] [Abstract][Full Text] [Related]
3. Human fibroblasts release low amounts of reactive oxygen species in response to the potent phagocyte stimulants, serum-treated zymosan, N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4 or 12-O-tetradecanoylphorbol 13-acetate. Meier B; Radeke HH; Selle S; Habermehl GG; Resch K; Sies H Biol Chem Hoppe Seyler; 1990 Oct; 371(10):1021-5. PubMed ID: 1963784 [TBL] [Abstract][Full Text] [Related]
4. Different regulation of the formation of intra- and extracellular oxygen radicals in macrophages. Dieter P; Arlt U; Fitzke E Biol Signals; 1995; 4(6):331-7. PubMed ID: 8688912 [TBL] [Abstract][Full Text] [Related]
5. Luminol-enhanced chemiluminescence induced in peripheral blood-derived human phagocytes: obligatory requirement of myeloperoxidase exocytosis by monocytes. Albrecht D; Jungi TW J Leukoc Biol; 1993 Oct; 54(4):300-6. PubMed ID: 8409752 [TBL] [Abstract][Full Text] [Related]
6. Oxygen free radical production by mouse peritoneal macrophages as a function of age. Lavie L; Gershon D Mech Ageing Dev; 1988 Nov; 45(2):177-89. PubMed ID: 3205071 [TBL] [Abstract][Full Text] [Related]
7. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion. Rathakrishnan C; Tiku K; Raghavan A; Tiku ML J Bone Miner Res; 1992 Oct; 7(10):1139-48. PubMed ID: 1280902 [TBL] [Abstract][Full Text] [Related]
8. Effect of cysteine ethylester hydrochloride (Cystanin) on host defense mechanisms (V): Potentiation of nitroblue tetrazolium reduction and chemiluminescence in macrophages or leukocytes of mice or rats. Hisadome M; Fukuda T; Terasawa M Jpn J Pharmacol; 1990 May; 53(1):57-66. PubMed ID: 2352378 [TBL] [Abstract][Full Text] [Related]
9. Bacteria and zymosan opsonized with histone, dextran sulfate, and polyanetholesulfonate trigger intense chemiluminescence in human blood leukocytes and platelets and in mouse macrophages: modulation by metabolic inhibitors in relation to leukocyte-bacteria interactions in inflammatory sites. Ginsburg I; Borinsky R; Lahav M; Gillert KE; Falkenberg S; Winkler M; Muller S Inflammation; 1982 Dec; 6(4):343-64. PubMed ID: 6186606 [TBL] [Abstract][Full Text] [Related]
10. Change in the chemiluminescence reactivity pattern during in vitro differentiation of human monocytes to macrophages. Jungi TW; Peterhans E Blut; 1988 May; 56(5):213-20. PubMed ID: 2836006 [TBL] [Abstract][Full Text] [Related]
11. The production of toxic oxygen metabolites by hemocytes of different snail species. Dikkeboom R; van der Knaap WP; van den Bovenkamp W; Tijnagel JM; Bayne CJ Dev Comp Immunol; 1988; 12(3):509-20. PubMed ID: 3169350 [TBL] [Abstract][Full Text] [Related]
12. Lucigenin- and luminol-enhanced chemiluminescence in turkey monocytes. Van Nerom A; Desmidt M; Ducatelle R; Haesebrouck F J Biolumin Chemilumin; 1997; 12(4):207-14. PubMed ID: 9481608 [TBL] [Abstract][Full Text] [Related]
13. Effect of interferon on chemiluminescence and hydroxyl radical production in murine macrophages stimulated by PMA. Ito M; Karmali R; Krim M Immunology; 1985 Nov; 56(3):533-41. PubMed ID: 4077098 [TBL] [Abstract][Full Text] [Related]
14. Oxygenation activity of chicken blood phagocytes as measured by luminol- and lucigenin-dependent chemiluminescence. Desmidt M; Van Nerom A; Haesebrouck F; Ducatelle R; Ysebaert MT Vet Immunol Immunopathol; 1996 Oct; 53(3-4):303-11. PubMed ID: 8969050 [TBL] [Abstract][Full Text] [Related]
15. Generation of reactive oxygen metabolites by the haemocytes of the mussel Mytilus edulis. Pipe RK Dev Comp Immunol; 1992; 16(2-3):111-22. PubMed ID: 1323488 [TBL] [Abstract][Full Text] [Related]
16. Neutrophil-derived oxidants as mediators of chemical activation in bone marrow. Twerdok LE; Trush MA Chem Biol Interact; 1988; 65(3):261-73. PubMed ID: 2837335 [TBL] [Abstract][Full Text] [Related]
17. Determination of the oxidative burst chemiluminescent response of avian and murine-derived macrophages versus corresponding cell lines in relation to stimulation with Salmonella serotypes. Chadfield M; Olsen J Vet Immunol Immunopathol; 2001 Aug; 80(3-4):289-308. PubMed ID: 11457481 [TBL] [Abstract][Full Text] [Related]
18. The human promyelocytic HL60 cell line: a model of myeloid cell differentiation using dimethylsulphoxide, phorbol ester and butyrate. Ahmed N; Williams JF; Weidemann MJ Biochem Int; 1991 Feb; 23(3):591-602. PubMed ID: 1652248 [TBL] [Abstract][Full Text] [Related]
19. Nitroblue tetrazolium reduction in monocytes and monocyte-derived macrophages. Effect of oxidative burst stimulants and interferons. Müller F; Rollag H; Frøland SS APMIS; 1989 Jun; 97(6):490-6. PubMed ID: 2472158 [TBL] [Abstract][Full Text] [Related]
20. Application of the nitroblue tetrazolium-reduction method for studies on the production of reactive oxygen species in insect haemocytes. Glupov VV; Khvoshevskaya MF; Lozinskaya YL; Dubovski IM; Martemyanov VV; Sokolova JY Cytobios; 2001; 106 Suppl 2():165-78. PubMed ID: 11545444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]