BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 28246640)

  • 1. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration.
    Luan L; Wei X; Zhao Z; Siegel JJ; Potnis O; Tuppen CA; Lin S; Kazmi S; Fowler RA; Holloway S; Dunn AK; Chitwood RA; Xie C
    Sci Adv; 2017 Feb; 3(2):e1601966. PubMed ID: 28246640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the in vivo glial response to miniaturized parylene cortical probes coated with an ultra-fast degrading polymer to aid insertion.
    Lo MC; Wang S; Singh S; Damodaran VB; Ahmed I; Coffey K; Barker D; Saste K; Kals K; Kaplan HM; Kohn J; Shreiber DI; Zahn JD
    J Neural Eng; 2018 Jun; 15(3):036002. PubMed ID: 29485103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Longitudinal neural and vascular recovery following ultraflexible neural electrode implantation in aged mice.
    He F; Sun Y; Jin Y; Yin R; Zhu H; Rathore H; Xie C; Luan L
    Biomaterials; 2022 Dec; 291():121905. PubMed ID: 36403326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain.
    Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel, minimally-invasive implantation of ultra-flexible neural electrode arrays.
    Zhao Z; Li X; He F; Wei X; Lin S; Xie C
    J Neural Eng; 2019 Jun; 16(3):035001. PubMed ID: 30736013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes.
    Xie C; Liu J; Fu TM; Dai X; Zhou W; Lieber CM
    Nat Mater; 2015 Dec; 14(12):1286-92. PubMed ID: 26436341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of chronic blood-brain barrier breach on intracortical electrode function.
    Saxena T; Karumbaiah L; Gaupp EA; Patkar R; Patil K; Betancur M; Stanley GB; Bellamkonda RV
    Biomaterials; 2013 Jul; 34(20):4703-13. PubMed ID: 23562053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraflexible Neural Probes for Multidirectional Neuronal Activity Recordings over Large Spatial and Temporal Scales.
    Yang Y; Xu K; Guan S; Ding J; Wang J; Fang Y; Tian H
    Nano Lett; 2023 Sep; 23(18):8568-8575. PubMed ID: 37669149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroadhesive protein coating improves the chronic performance of neuroelectronics in mouse brain.
    Golabchi A; Woeppel KM; Li X; Lagenaur CF; Cui XT
    Biosens Bioelectron; 2020 May; 155():112096. PubMed ID: 32090868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofunctionalisation of electrically conducting polymers.
    Vallejo-Giraldo C; Kelly A; Biggs MJ
    Drug Discov Today; 2014 Jan; 19(1):88-94. PubMed ID: 23962478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic co-implantation of ultraflexible neural electrodes and a cranial window.
    Yin R; Noble BC; He F; Zolotavin P; Rathore H; Jin Y; Sevilla N; Xie C; Luan L
    Neurophotonics; 2022 Jul; 9(3):032204. PubMed ID: 35036472
    [No Abstract]   [Full Text] [Related]  

  • 14. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing.
    Keogh C
    Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An ex vivo method for evaluating the biocompatibility of neural electrodes in rat brain slice cultures.
    Koeneman BA; Lee KK; Singh A; He J; Raupp GB; Panitch A; Capco DG
    J Neurosci Methods; 2004 Aug; 137(2):257-63. PubMed ID: 15262069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.
    Eles JR; Vazquez AL; Snyder NR; Lagenaur C; Murphy MC; Kozai TD; Cui XT
    Biomaterials; 2017 Jan; 113():279-292. PubMed ID: 27837661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-threshold, high-resolution, chronically stable intracortical microstimulation by ultraflexible electrodes.
    Lycke R; Kim R; Zolotavin P; Montes J; Sun Y; Koszeghy A; Altun E; Noble B; Yin R; He F; Totah N; Xie C; Luan L
    Cell Rep; 2023 Jun; 42(6):112554. PubMed ID: 37235473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo spatiotemporal dynamics of NG2 glia activity caused by neural electrode implantation.
    Wellman SM; Kozai TDY
    Biomaterials; 2018 May; 164():121-133. PubMed ID: 29501892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-scale, multi-modal analysis uncovers complex relationship at the brain tissue-implant neural interface: new emphasis on the biological interface.
    Michelson NJ; Vazquez AL; Eles JR; Salatino JW; Purcell EK; Williams JJ; Cui XT; Kozai TDY
    J Neural Eng; 2018 Jun; 15(3):033001. PubMed ID: 29182149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.