These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2824718)

  • 1. Development of glycine receptor distribution in the lateral superior olive of the gerbil.
    Sanes DH; Wooten GF
    J Neurosci; 1987 Nov; 7(11):3803-11. PubMed ID: 2824718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative distribution of the glycine receptor in the auditory brain stem of the gerbil.
    Sanes DH; Geary WA; Wooten GF; Rubel EW
    J Neurosci; 1987 Nov; 7(11):3793-802. PubMed ID: 2890726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycinergic transmission influences the development of dendrite shape.
    Sanes DH; Chokshi P
    Neuroreport; 1992 Apr; 3(4):323-6. PubMed ID: 1325201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afferent regulation of glycine receptor distribution in the gerbil LSO.
    Koch U; Sanes DH
    Microsc Res Tech; 1998 May; 41(3):263-9. PubMed ID: 9605343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil.
    Kil J; Kageyama GH; Semple MN; Kitzes LM
    J Comp Neurol; 1995 Mar; 353(3):317-40. PubMed ID: 7751434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and specificity of inhibitory terminal arborizations in the central nervous system.
    Sanes DH; Siverls V
    J Neurobiol; 1991 Nov; 22(8):837-54. PubMed ID: 1663990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of glycinergic cells and puncta in nuclei of the superior olivary complex of the postnatal ferret.
    Henkel CK; Brunso-Bechtold JK
    J Comp Neurol; 1995 Apr; 354(3):470-80. PubMed ID: 7608333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal development of [3H]flunitrazepam and [3H]strychnine binding sites in rat spinal cord localized by quantitative autoradiography.
    Brüning G; Bauer R; Baumgarten HG
    Neurosci Lett; 1990 Mar; 110(1-2):6-10. PubMed ID: 2158019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation.
    Suneja SK; Benson CG; Potashner SJ
    Exp Neurol; 1998 Dec; 154(2):473-88. PubMed ID: 9878183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMDA, non-NMDA and glycine receptors mediate binaural interaction in the lateral superior olive: physiological evidence from mouse brain slice.
    Wu SH; Kelly JB
    Neurosci Lett; 1992 Jan; 134(2):257-60. PubMed ID: 1350335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic chiasm. III: Nature, distribution, and sources of afferents to the lateral superior olive in the cat.
    Glendenning KK; Masterton RB; Baker BN; Wenthold RJ
    J Comp Neurol; 1991 Aug; 310(3):377-400. PubMed ID: 1723989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distribution of glycine receptors in the human brain. A light microscopic autoradiographic study using [3H]strychnine.
    Probst A; Cortés R; Palacios JM
    Neuroscience; 1986; 17(1):11-35. PubMed ID: 3008022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain.
    Bristow DR; Bowery NG; Woodruff GN
    Eur J Pharmacol; 1986 Jul; 126(3):303-7. PubMed ID: 3019717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive.
    Sanes DH; Song J; Tyson J
    Brain Res Dev Brain Res; 1992 May; 67(1):47-55. PubMed ID: 1638742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and regional distribution of strychnine-insensitive [3H]glycine binding sites in rat brain by quantitative receptor autoradiography.
    McDonald JW; Penney JB; Johnston MV; Young AB
    Neuroscience; 1990; 35(3):653-68. PubMed ID: 2166246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus.
    Saint Marie RL; Baker RA
    Brain Res; 1990 Aug; 524(2):244-53. PubMed ID: 1705464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using 3H-strychnine as the ligand.
    White WF; O'Gorman S; Roe AW
    J Neurosci; 1990 Mar; 10(3):795-813. PubMed ID: 1690790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for an alteration of the tonotopic map in the gerbil cochlea during development.
    Sanes DH; Merickel M; Rubel EW
    J Comp Neurol; 1989 Jan; 279(3):436-44. PubMed ID: 2918079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus).
    Gleich O; Weiss M; Strutz J
    Hear Res; 2004 Aug; 194(1-2):47-59. PubMed ID: 15276675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex.
    Wenthold RJ; Huie D; Altschuler RA; Reeks KA
    Neuroscience; 1987 Sep; 22(3):897-912. PubMed ID: 3683855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.