BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28247216)

  • 1. Antitumor activity of interferon-β1a in hormone refractory prostate cancer with neuroendocrine differentiation.
    Dicitore A; Grassi ES; Borghi MO; Gelmini G; Cantone MC; Gaudenzi G; Persani L; Caraglia M; Vitale G
    J Endocrinol Invest; 2017 Jul; 40(7):761-770. PubMed ID: 28247216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IFN-beta is a highly potent inhibitor of gastroenteropancreatic neuroendocrine tumor cell growth in vitro.
    Vitale G; de Herder WW; van Koetsveld PM; Waaijers M; Schoordijk W; Croze E; Colao A; Lamberts SW; Hofland LJ
    Cancer Res; 2006 Jan; 66(1):554-62. PubMed ID: 16397272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: A central role on microtubule stabilization and mitochondrial apoptosis pathway.
    Ho CH; Hsu JL; Liu SP; Hsu LC; Chang WL; Chao CC; Guh JH
    Prostate; 2015 Sep; 75(13):1454-66. PubMed ID: 26180030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of human recombinant type I IFNs (IFN-α2b and IFN-β1a) on growth and migration of primary endometrial stromal cells from women with deeply infiltrating endometriosis: A preliminary study.
    Dicitore A; Castiglioni S; Saronni D; Gentilini D; Borghi MO; Stabile S; Vignali M; Di Blasio AM; Persani L; Vitale G
    Eur J Obstet Gynecol Reprod Biol; 2018 Nov; 230():192-198. PubMed ID: 30312884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The marine triterpene glycoside frondoside A exhibits activity in vitro and in vivo in prostate cancer.
    Dyshlovoy SA; Menchinskaya ES; Venz S; Rast S; Amann K; Hauschild J; Otte K; Kalinin VI; Silchenko AS; Avilov SA; Alsdorf W; Madanchi R; Bokemeyer C; Schumacher U; Walther R; Aminin DL; Fedorov SN; Shubina LK; Stonik VA; Balabanov S; Honecker F; von Amsberg G
    Int J Cancer; 2016 May; 138(10):2450-65. PubMed ID: 26695519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitization of glycoengineered interferon-β1a-resistant cancer cells by cFLIP inhibition for enhanced anti-cancer therapy.
    Kim TE; Hong S; Song K; Park SH; Shin YK
    Oncotarget; 2017 Feb; 8(8):13957-13970. PubMed ID: 28086218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Type I interferons in the treatment of pancreatic cancer: mechanisms of action and role of related receptors.
    Vitale G; van Eijck CH; van Koetsveld Ing PM; Erdmann JI; Speel EJ; van der Wansem Ing K; Mooij DM; Colao A; Lombardi G; Croze E; Lamberts SW; Hofland LJ
    Ann Surg; 2007 Aug; 246(2):259-68. PubMed ID: 17667505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interferon-gamma induces neuroendocrine-like differentiation of human prostate basal-epithelial cells.
    Untergasser G; Plas E; Pfister G; Heinrich E; Berger P
    Prostate; 2005 Sep; 64(4):419-29. PubMed ID: 15800938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SRJ23, a new semisynthetic andrographolide derivative: in vitro growth inhibition and mechanisms of cell cycle arrest and apoptosis in prostate cancer cells.
    Wong HC; Wong CC; Sagineedu SR; Loke SC; Lajis NH; Stanslas J
    Cell Biol Toxicol; 2014 Oct; 30(5):269-88. PubMed ID: 25070834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro.
    Makarević J; Tsaur I; Juengel E; Borgmann H; Nelson K; Thomas C; Bartsch G; Haferkamp A; Blaheta RA
    Life Sci; 2016 Feb; 147():137-42. PubMed ID: 26827990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Difference of interferon-α and interferon-β on melanoma growth and lymph node metastasis in mice.
    Roh MR; Zheng Z; Kim HS; Jeung HC; Rha SY; Chung KY
    Melanoma Res; 2013 Apr; 23(2):114-24. PubMed ID: 23358428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small molecule tolfenamic acid inhibits PC-3 cell proliferation and invasion in vitro, and tumor growth in orthotopic mouse model for prostate cancer.
    Sankpal UT; Abdelrahim M; Connelly SF; Lee CM; Madero-Visbal R; Colon J; Smith J; Safe S; Maliakal P; Basha R
    Prostate; 2012 Nov; 72(15):1648-58. PubMed ID: 22473873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor apoptosis induced by epoxide-containing piperazines, a new class of anti-cancer agents.
    Eilon GF; Gu J; Slater LM; Hara K; Jacobs JW
    Cancer Chemother Pharmacol; 2000; 45(3):183-91. PubMed ID: 10663635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of 2,3-dichloro-5,8-dimethoxy-1,4-naphthoquinone in androgen-dependent and -independent prostate cancer cell lines.
    Copeland RL; Das JR; Bakare O; Enwerem NM; Berhe S; Hillaire K; White D; Beyene D; Kassim OO; Kanaan YM
    Anticancer Res; 2007; 27(3B):1537-46. PubMed ID: 17595773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling.
    Dasari S; Samy ALPA; Kajdacsy-Balla A; Bosland MC; Munirathinam G
    Food Chem Toxicol; 2018 May; 115():218-227. PubMed ID: 29432837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting prostate cancer with HTI-286, a synthetic analog of the marine sponge product hemiasterlin.
    Hadaschik BA; Ettinger S; Sowery RD; Zoubeidi A; Andersen RJ; Roberge M; Gleave ME
    Int J Cancer; 2008 May; 122(10):2368-76. PubMed ID: 18240145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent inhibitory effects of type I interferons on human adrenocortical carcinoma cell growth.
    van Koetsveld PM; Vitale G; de Herder WW; Feelders RA; van der Wansem K; Waaijers M; van Eijck CH; Speel EJ; Croze E; van der Lely AJ; Lamberts SW; Hofland LJ
    J Clin Endocrinol Metab; 2006 Nov; 91(11):4537-43. PubMed ID: 16912135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells.
    Vitale G; van Koetsveld PM; de Herder WW; van der Wansem K; Janssen JA; Colao A; Lombardi G; Lamberts SW; Hofland LJ
    Am J Physiol Endocrinol Metab; 2009 Mar; 296(3):E559-66. PubMed ID: 19141687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Epigenetic Therapy in the Modulation of Tumor Growth and Migration in Human Castration-Resistant Prostate Cancer Cells with Neuroendocrine Differentiation.
    Dicitore A; Bacalini MG; Saronni D; Gaudenzi G; Cantone MC; Gelmini G; Grassi ES; Gentilini D; Borghi MO; Di Blasio AM; Persani L; Garagnani P; Franceschi C; Vitale G
    Neuroendocrinology; 2022; 112(6):580-594. PubMed ID: 34348348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-18 is produced by prostate cancer cells and secreted in response to interferons.
    Lebel-Binay S; Thiounn N; De Pinieux G; Vieillefond A; Debré B; Bonnefoy JY; Fridman WH; Pagès F
    Int J Cancer; 2003 Oct; 106(6):827-35. PubMed ID: 12918059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.