BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 28247345)

  • 41. BMP signaling balances proliferation and differentiation of muscle satellite cell descendants.
    Friedrichs M; Wirsdöerfer F; Flohé SB; Schneider S; Wuelling M; Vortkamp A
    BMC Cell Biol; 2011 Jun; 12():26. PubMed ID: 21645366
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal?
    Zammit PS; Golding JP; Nagata Y; Hudon V; Partridge TA; Beauchamp JR
    J Cell Biol; 2004 Aug; 166(3):347-57. PubMed ID: 15277541
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of adherent myogenic cells and dynamic culture in engineered muscle function and maintenance of satellite cells.
    Juhas M; Bursac N
    Biomaterials; 2014 Nov; 35(35):9438-46. PubMed ID: 25154662
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dlk1 is necessary for proper skeletal muscle development and regeneration.
    Waddell JN; Zhang P; Wen Y; Gupta SK; Yevtodiyenko A; Schmidt JV; Bidwell CA; Kumar A; Kuang S
    PLoS One; 2010 Nov; 5(11):e15055. PubMed ID: 21124733
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification, Isolation, and Characterization of Mesenchymal Progenitors in Mouse and Human Skeletal Muscle.
    Uezumi A; Kasai T; Tsuchida K
    Methods Mol Biol; 2016; 1460():241-53. PubMed ID: 27492177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells.
    Cornelison DD; Wold BJ
    Dev Biol; 1997 Nov; 191(2):270-83. PubMed ID: 9398440
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ancestral Myf5 gene activity in periocular connective tissue identifies a subset of fibro/adipogenic progenitors but does not connote a myogenic origin.
    Stuelsatz P; Shearer A; Yablonka-Reuveni Z
    Dev Biol; 2014 Jan; 385(2):366-79. PubMed ID: 23969310
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury.
    LaBarge MA; Blau HM
    Cell; 2002 Nov; 111(4):589-601. PubMed ID: 12437931
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo tissue engineering of functional skeletal muscle by freshly isolated satellite cells embedded in a photopolymerizable hydrogel.
    Rossi CA; Flaibani M; Blaauw B; Pozzobon M; Figallo E; Reggiani C; Vitiello L; Elvassore N; De Coppi P
    FASEB J; 2011 Jul; 25(7):2296-304. PubMed ID: 21450908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A population of myogenic stem cells that survives skeletal muscle aging.
    Collins CA; Zammit PS; Ruiz AP; Morgan JE; Partridge TA
    Stem Cells; 2007 Apr; 25(4):885-94. PubMed ID: 17218401
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional analysis of homeodomain-containing transcription factor Lbx1 in satellite cells of mouse skeletal muscle.
    Watanabe S; Kondo S; Hayasaka M; Hanaoka K
    J Cell Sci; 2007 Dec; 120(Pt 23):4178-87. PubMed ID: 18003701
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage
    Al Tanoury Z; Rao J; Tassy O; Gobert B; Gapon S; Garnier JM; Wagner E; Hick A; Hall A; Gussoni E; Pourquié O
    Development; 2020 Jun; 147(12):. PubMed ID: 32541004
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation, Culture, and Staining of Single Myofibers.
    Gallot YS; Hindi SM; Mann AK; Kumar A
    Bio Protoc; 2016 Oct; 6(19):. PubMed ID: 27819014
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeting the Expression of Long Noncoding RNAs in Murine Satellite Cells from Single Myofibers.
    Macino M; Biferali B; Cipriano A; Ballarino M; Mozzetta C
    Bio Protoc; 2021 Nov; 11(21):e4209. PubMed ID: 34859124
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration.
    Lepper C; Partridge TA; Fan CM
    Development; 2011 Sep; 138(17):3639-46. PubMed ID: 21828092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asymmetric self-renewal and commitment of satellite stem cells in muscle.
    Kuang S; Kuroda K; Le Grand F; Rudnicki MA
    Cell; 2007 Jun; 129(5):999-1010. PubMed ID: 17540178
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dormancy and quiescence of skeletal muscle stem cells.
    Rocheteau P; Vinet M; Chretien F
    Results Probl Cell Differ; 2015; 56():215-35. PubMed ID: 25344673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation and ex vivo cultivation of single myofibers from porcine muscle.
    Stange K; Ahrens HE; von Maltzahn J; Röntgen M
    In Vitro Cell Dev Biol Anim; 2020 Sep; 56(8):585-592. PubMed ID: 32964376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence.
    Kostallari E; Baba-Amer Y; Alonso-Martin S; Ngoh P; Relaix F; Lafuste P; Gherardi RK
    Development; 2015 Apr; 142(7):1242-53. PubMed ID: 25742797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamics of muscle fibre growth during postnatal mouse development.
    White RB; Biérinx AS; Gnocchi VF; Zammit PS
    BMC Dev Biol; 2010 Feb; 10():21. PubMed ID: 20175910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.