These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28247452)
1. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community. Pilger TJ; Gido KB; Propst DL; Whitney JE; Turner TF Mol Ecol; 2017 May; 26(10):2687-2697. PubMed ID: 28247452 [TBL] [Abstract][Full Text] [Related]
2. Demography Predicts Genetic Effective Size in a Desert Stream Fish Community. Pilger TJ; Gido KB; Propst DL; Whitney JE; Turner TF Am Nat; 2022 Aug; 200(2):275-291. PubMed ID: 35905398 [TBL] [Abstract][Full Text] [Related]
3. Emergent patterns of population genetic structure for a coral reef community. Selkoe KA; Gaggiotti OE; Bowen BW; Toonen RJ; Mol Ecol; 2014 Jun; 23(12):3064-79. PubMed ID: 24866831 [TBL] [Abstract][Full Text] [Related]
4. Comparative riverscape genetics reveals reservoirs of genetic diversity for conservation and restoration of Great Plains fishes. Osborne MJ; Perkin JS; Gido KB; Turner TF Mol Ecol; 2014 Dec; 23(23):5663-79. PubMed ID: 25327780 [TBL] [Abstract][Full Text] [Related]
5. Evolutionary processes driving spatial patterns of intraspecific genetic diversity in river ecosystems. Paz-Vinas I; Loot G; Stevens VM; Blanchet S Mol Ecol; 2015 Sep; 24(18):4586-604. PubMed ID: 26284462 [TBL] [Abstract][Full Text] [Related]
6. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Brauer CJ; Unmack PJ; Smith S; Bernatchez L; Beheregaray LB Mol Ecol; 2018 Sep; 27(17):3484-3497. PubMed ID: 30030879 [TBL] [Abstract][Full Text] [Related]
7. Landscape genetic analyses reveal cryptic population structure and putative selection gradients in a large-scale estuarine environment. McCairns RJ; Bernatchez L Mol Ecol; 2008 Sep; 17(17):3901-16. PubMed ID: 18662229 [TBL] [Abstract][Full Text] [Related]
8. Landscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis. Castric V; Bonney F; Bernatchez L Evolution; 2001 May; 55(5):1016-28. PubMed ID: 11430638 [TBL] [Abstract][Full Text] [Related]
9. Islands of water in a sea of dry land: hydrological regime predicts genetic diversity and dispersal in a widespread fish from Australia's arid zone, the golden perch (Macquaria ambigua). Faulks LK; Gilligan DM; Beheregaray LB Mol Ecol; 2010 Nov; 19(21):4723-37. PubMed ID: 20887362 [TBL] [Abstract][Full Text] [Related]
10. Contrasting life histories contribute to divergent patterns of genetic diversity and population connectivity in freshwater sculpin fishes. Baek SY; Kang JH; Jo SH; Jang JE; Byeon SY; Wang JH; Lee HG; Choi JK; Lee HJ BMC Evol Biol; 2018 Apr; 18(1):52. PubMed ID: 29642844 [TBL] [Abstract][Full Text] [Related]
11. Landscape genetics informs mesohabitat preference and conservation priorities for a surrogate indicator species in a highly fragmented river system. Lean J; Hammer MP; Unmack PJ; Adams M; Beheregaray LB Heredity (Edinb); 2017 Apr; 118(4):374-384. PubMed ID: 27876805 [TBL] [Abstract][Full Text] [Related]
12. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Hasselman DJ; Ricard D; Bentzen P Mol Ecol; 2013 Mar; 22(6):1558-73. PubMed ID: 23379260 [TBL] [Abstract][Full Text] [Related]
13. Fragmentation alters stream fish community structure in dendritic ecological networks. Perkin JS; Gido KB Ecol Appl; 2012 Dec; 22(8):2176-87. PubMed ID: 23387118 [TBL] [Abstract][Full Text] [Related]
14. Patterns of fish community structure in a long-term watershed-scale study to address the aquatic ecosystem effects of pulp and paper mill discharges in four US receiving streams. Flinders CA; Ragsdale RL; Hall TJ Integr Environ Assess Manag; 2009 Apr; 5(2):219-33. PubMed ID: 19115783 [TBL] [Abstract][Full Text] [Related]
15. Conserving threatened riparian ecosystems in the American West: Precipitation gradients and river networks drive genetic connectivity and diversity in a foundation riparian tree (Populus angustifolia). Bothwell HM; Cushman SA; Woolbright SA; Hersch-Green EI; Evans LM; Whitham TG; Allan GJ Mol Ecol; 2017 Oct; 26(19):5114-5132. PubMed ID: 28779535 [TBL] [Abstract][Full Text] [Related]
16. Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids. Gomez-Uchida D; Knight TW; Ruzzante DE Mol Ecol; 2009 Dec; 18(23):4854-69. PubMed ID: 19878451 [TBL] [Abstract][Full Text] [Related]
17. Rangewide landscape genetics of an endemic Pacific northwestern salamander. Trumbo DR; Spear SF; Baumsteiger J; Storfer A Mol Ecol; 2013 Mar; 22(5):1250-66. PubMed ID: 23293948 [TBL] [Abstract][Full Text] [Related]
18. Extreme genetic structure in a small-bodied freshwater fish, the purple spotted gudgeon, Mogurnda adspersa (Eleotridae). Hughes JM; Real KM; Marshall JC; Schmidt DJ PLoS One; 2012; 7(7):e40546. PubMed ID: 22808190 [TBL] [Abstract][Full Text] [Related]
19. Is Niagara Falls a barrier to gene flow in riverine fishes? A test using genome-wide SNP data from seven native species. Lujan NK; Weir JT; Noonan BP; Lovejoy NR; Mandrak NE Mol Ecol; 2020 Apr; 29(7):1235-1249. PubMed ID: 32202354 [TBL] [Abstract][Full Text] [Related]
20. Drift happens: Molecular genetic diversity and differentiation among populations of jewelweed (Impatiens capensis Meerb.) reflect fragmentation of floodplain forests. Toczydlowski RH; Waller DM Mol Ecol; 2019 May; 28(10):2459-2475. PubMed ID: 30851213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]