These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 28247563)

  • 1. Combinatorial Therapies After Spinal Cord Injury: How Can Biomaterials Help?
    Führmann T; Anandakumaran PN; Shoichet MS
    Adv Healthc Mater; 2017 May; 6(10):. PubMed ID: 28247563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regenerative Therapies for Spinal Cord Injury.
    Ashammakhi N; Kim HJ; Ehsanipour A; Bierman RD; Kaarela O; Xue C; Khademhosseini A; Seidlits SK
    Tissue Eng Part B Rev; 2019 Dec; 25(6):471-491. PubMed ID: 31452463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration.
    Chedly J; Soares S; Montembault A; von Boxberg Y; Veron-Ravaille M; Mouffle C; Benassy MN; Taxi J; David L; Nothias F
    Biomaterials; 2017 Sep; 138():91-107. PubMed ID: 28554011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Cell and Functional Biomaterial Treatment for Spinal Cord Injury.
    Liu T; Zhu W; Zhang X; He C; Liu X; Xin Q; Chen K; Wang H
    Biomed Res Int; 2022; 2022():5079153. PubMed ID: 35978649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for Effective Neural Circuit Reconstruction After Spinal Cord Injury: Use of Stem Cells and Biomaterials.
    Hou Y; Liu X; Guo Y; Liu D; Guo P; Liu J
    World Neurosurg; 2022 May; 161():82-89. PubMed ID: 35144032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomaterials and Magnetic Stem Cell Delivery in the Treatment of Spinal Cord Injury.
    Kubinová Š
    Neurochem Res; 2020 Jan; 45(1):171-179. PubMed ID: 31028504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current multi-scale biomaterials for tissue regeneration following spinal cord injury.
    Zhang Y; Wu Z; Wu J; Li T; Jiang F; Yang B
    Neurochem Int; 2024 Sep; 178():105801. PubMed ID: 38971503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J; Zimmermann T; Schmarowski N; Nitsch R; Fackelmeier B; Friedemann K; Radyushkin K; Baumgart J; Lutz B; Leschik J
    Stem Cell Res Ther; 2016 Jan; 7():11. PubMed ID: 26762640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived from Induced Pluripotent Stem Cells.
    López-Serrano C; Torres-Espín A; Hernández J; Alvarez-Palomo AB; Requena J; Gasull X; Edel MJ; Navarro X
    Cell Transplant; 2016 Oct; 25(10):1833-1852. PubMed ID: 27075820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Application of Biomaterials in Spinal Cord Injury.
    Feng C; Deng L; Yong YY; Wu JM; Qin DL; Yu L; Zhou XG; Wu AG
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural stem cell therapies for spinal cord injury repair: an update on recent preclinical and clinical advances.
    Hosseini SM; Borys B; Karimi-Abdolrezaee S
    Brain; 2024 Mar; 147(3):766-793. PubMed ID: 37975820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus.
    Kanno H; Pearse DD; Ozawa H; Itoi E; Bunge MB
    Rev Neurosci; 2015; 26(2):121-8. PubMed ID: 25581750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cells: Current approach and future prospects in spinal cord injury repair.
    Zhang N; Wimmer J; Qian SJ; Chen WS
    Anat Rec (Hoboken); 2010 Mar; 293(3):519-30. PubMed ID: 19937641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomaterial design considerations for repairing the injured spinal cord.
    Gilbert RJ; Rivet CJ; Zuidema JM; Popovich PG
    Crit Rev Biomed Eng; 2011; 39(2):125-80. PubMed ID: 21488818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterials combined with cell therapy for treatment of spinal cord injury.
    Kubinová S; Syková E
    Regen Med; 2012 Mar; 7(2):207-24. PubMed ID: 22397610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioengineered strategies for spinal cord repair.
    Nomura H; Tator CH; Shoichet MS
    J Neurotrauma; 2006; 23(3-4):496-507. PubMed ID: 16629632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced approaches to regenerate spinal cord injury: The development of cell and tissue engineering therapy and combinational treatments.
    Saremi J; Mahmoodi N; Rasouli M; Ranjbar FE; Mazaheri EL; Akbari M; Hasanzadeh E; Azami M
    Biomed Pharmacother; 2022 Feb; 146():112529. PubMed ID: 34906773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.