These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28247585)

  • 1. Aging yeast gain a competitive advantage on non-optimal carbon sources.
    Frenk S; Pizza G; Walker RV; Houseley J
    Aging Cell; 2017 Jun; 16(3):602-604. PubMed ID: 28247585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic excretion associated with nutrient-growth dysregulation promotes the rapid evolution of an overt metabolic defect.
    Green R; Sonal ; Wang L; Hart SFM; Lu W; Skelding D; Burton JC; Mi H; Capel A; Chen HA; Lin A; Subramaniam AR; Rabinowitz JD; Shou W
    PLoS Biol; 2020 Aug; 18(8):e3000757. PubMed ID: 32833957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability.
    Bagamery LE; Justman QA; Garner EC; Murray AW
    Curr Biol; 2020 Dec; 30(23):4563-4578.e4. PubMed ID: 32976801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different levels of catabolite repression optimize growth in stable and variable environments.
    New AM; Cerulus B; Govers SK; Perez-Samper G; Zhu B; Boogmans S; Xavier JB; Verstrepen KJ
    PLoS Biol; 2014 Jan; 12(1):e1001764. PubMed ID: 24453942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactose utilization sheds new light on sugar metabolism in the sequenced strain Dekkera bruxellensis CBS 2499.
    Moktaduzzaman M; Galafassi S; Capusoni C; Vigentini I; Ling Z; Piškur J; Compagno C
    FEMS Yeast Res; 2015 Mar; 15(2):. PubMed ID: 25673757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic gene regulation in a dynamically changing environment.
    Bennett MR; Pang WL; Ostroff NA; Baumgartner BL; Nayak S; Tsimring LS; Hasty J
    Nature; 2008 Aug; 454(7208):1119-22. PubMed ID: 18668041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting sugars and shifting paradigms.
    Siegal ML
    PLoS Biol; 2015 Feb; 13(2):e1002068. PubMed ID: 25688600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.
    Santos J; Leitão-Correia F; Sousa MJ; Leão C
    Oncotarget; 2016 Apr; 7(17):23033-42. PubMed ID: 27072582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.
    Guaragnella N; Ždralević M; Lattanzio P; Marzulli D; Pracheil T; Liu Z; Passarella S; Marra E; Giannattasio S
    Biochim Biophys Acta; 2013 Dec; 1833(12):2765-2774. PubMed ID: 23906793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signatures of optimal codon usage in metabolic genes inform budding yeast ecology.
    LaBella AL; Opulente DA; Steenwyk JL; Hittinger CT; Rokas A
    PLoS Biol; 2021 Apr; 19(4):e3001185. PubMed ID: 33872297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The advantage of sex in evolving yeast populations.
    Zeyl C; Bell G
    Nature; 1997 Jul; 388(6641):465-8. PubMed ID: 9242403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-Term Adaptation to Galactose as a Sole Carbon Source Selects for Mutations Outside the Canonical GAL Pathway.
    Martínez AA; Conboy A; Buskirk SW; Marad DA; Lang GI
    J Mol Evol; 2023 Feb; 91(1):46-59. PubMed ID: 36482210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polygenic evolution of a sugar specialization trade-off in yeast.
    Roop JI; Chang KC; Brem RB
    Nature; 2016 Feb; 530(7590):336-9. PubMed ID: 26863195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coevolution trumps pleiotropy: carbon assimilation traits are independent of metabolic network structure in budding yeast.
    Opulente DA; Morales CM; Carey LB; Rest JS
    PLoS One; 2013; 8(1):e54403. PubMed ID: 23326606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gcn4p and the Crabtree effect of yeast: drawing the causal model of the Crabtree effect in Saccharomyces cerevisiae and explaining evolutionary trade-offs of adaptation to galactose through systems biology.
    Martínez JL; Bordel S; Hong KK; Nielsen J
    FEMS Yeast Res; 2014 Jun; 14(4):654-62. PubMed ID: 24655306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis.
    Hong KK; Vongsangnak W; Vemuri GN; Nielsen J
    Proc Natl Acad Sci U S A; 2011 Jul; 108(29):12179-84. PubMed ID: 21715660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pleiotropy and GAL pathway degeneration in yeast.
    MacLean RC
    J Evol Biol; 2007 Jul; 20(4):1333-8. PubMed ID: 17584228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.