These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28247585)

  • 21. The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast
    Mattenberger F; Fares MA; Toft C; Sabater-Muñoz B
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbohydrate carbon sources induce loss of flocculation of an ale-brewing yeast strain.
    Soares EV; Vroman A; Mortier J; Rijsbrack K; Mota M
    J Appl Microbiol; 2004; 96(5):1117-23. PubMed ID: 15078529
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systems biology: Reverse engineering the cell.
    Ingolia NT; Weissman JS
    Nature; 2008 Aug; 454(7208):1059-62. PubMed ID: 18756243
    [No Abstract]   [Full Text] [Related]  

  • 24. Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae.
    Sousa M; Duarte AM; Fernandes TR; Chaves SR; Pacheco A; Leão C; Côrte-Real M; Sousa MJ
    BMC Genomics; 2013 Nov; 14(1):838. PubMed ID: 24286259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of pleiotropic costs in experimental populations.
    Jasmin JN; Zeyl C
    J Evol Biol; 2013 Jun; 26(6):1363-9. PubMed ID: 23638686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways.
    Ferreira BS; Calado CR; van Keulen F; Fonseca LP; Cabral JM; da Fonseca MM
    J Biotechnol; 2004 Apr; 109(1-2):159-67. PubMed ID: 15063624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural variation in preparation for nutrient depletion reveals a cost-benefit tradeoff.
    Wang J; Atolia E; Hua B; Savir Y; Escalante-Chong R; Springer M
    PLoS Biol; 2015 Jan; 13(1):e1002041. PubMed ID: 25626068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Genetic Requirements for Pentose Fermentation in Budding Yeast.
    Mittelman K; Barkai N
    G3 (Bethesda); 2017 Jun; 7(6):1743-1752. PubMed ID: 28404660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant.
    Lindén T; Peetre J; Hahn-Hägerdal B
    Appl Environ Microbiol; 1992 May; 58(5):1661-9. PubMed ID: 1622236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reproductive Potential of Yeast Cells Depends on Overall Action of Interconnected Changes in Central Carbon Metabolism, Cellular Biosynthetic Capacity, and Proteostasis.
    Maslanka R; Zadrag-Tecza R
    Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33022992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae.
    Fabrizio P; Battistella L; Vardavas R; Gattazzo C; Liou LL; Diaspro A; Dossen JW; Gralla EB; Longo VD
    J Cell Biol; 2004 Sep; 166(7):1055-67. PubMed ID: 15452146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Redox control of yeast Sir2 activity is involved in acetic acid resistance and longevity.
    Vall-Llaura N; Mir N; Garrido L; Vived C; Cabiscol E
    Redox Biol; 2019 Jun; 24():101229. PubMed ID: 31153040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae.
    Nevado J; Navarro MA; Heredia CF
    Yeast; 1993 Feb; 9(2):111-9. PubMed ID: 8465600
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae.
    Heredia CF
    Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase.
    Palecek SP; Parikh AS; Huh JH; Kron SJ
    Mol Microbiol; 2002 Jul; 45(2):453-69. PubMed ID: 12123456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon source-dependent regulation of cell growth by murine protein kinase C epsilon expression in Saccharomyces cerevisiae.
    Parissenti AM; Villeneuve D; Kirwan-Rhude A; Busch D
    J Cell Physiol; 1999 Feb; 178(2):216-26. PubMed ID: 10048586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measuring competitive fitness in dynamic environments.
    Razinkov IA; Baumgartner BL; Bennett MR; Tsimring LS; Hasty J
    J Phys Chem B; 2013 Oct; 117(42):13175-81. PubMed ID: 23841812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dbf2 is implicated in a Cbt1-dependent pathway following a shift from glucose to galactose or non-fermentable carbon sources in Saccharomyces cerevisiae.
    Grandin N; Charbonneau M
    Mol Gen Genet; 1999 Mar; 261(2):402-7. PubMed ID: 10102376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.