These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 28247915)
1. Polar silica-based stationary phases. Part I - Singly and doubly layered sorbents consisting of TRIS-silica and chondroitin sulfate A-TRIS-silica for hydrophilic interaction liquid chromatography. Rathnasekara R; El Rassi Z Electrophoresis; 2017 Jun; 38(12):1582-1591. PubMed ID: 28247915 [TBL] [Abstract][Full Text] [Related]
2. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography. Rathnasekara R; El Rassi Z J Chromatogr A; 2017 Jul; 1508():24-32. PubMed ID: 28599861 [TBL] [Abstract][Full Text] [Related]
3. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. Aydoğan C; El Rassi Z J Chromatogr A; 2016 May; 1445():55-61. PubMed ID: 27059399 [TBL] [Abstract][Full Text] [Related]
4. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. Spicer V; Krokhin OV J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631 [TBL] [Abstract][Full Text] [Related]
5. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode. Bicker W; Wu J; Yeman H; Albert K; Lindner W J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765 [TBL] [Abstract][Full Text] [Related]
6. A study of the analysis of acidic solutes by hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2018 Jan; 1534():64-74. PubMed ID: 29277254 [TBL] [Abstract][Full Text] [Related]
7. A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. Qiao L; Wang S; Li H; Shan Y; Dou A; Shi X; Xu G J Chromatogr A; 2014 Sep; 1360():240-7. PubMed ID: 25129388 [TBL] [Abstract][Full Text] [Related]
8. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings. Bicker W; Wu J; Lämmerhofer M; Lindner W J Sep Sci; 2008 Sep; 31(16-17):2971-87. PubMed ID: 18785146 [TBL] [Abstract][Full Text] [Related]
9. Zwitterionic polymer-terminated porous silica stationary phases for highly selective separation in hydrophilic interaction chromatography. Hu Y; Kadotani J; Kuwahara Y; Ihara H; Takafuji M J Chromatogr A; 2023 Mar; 1693():463885. PubMed ID: 36848731 [TBL] [Abstract][Full Text] [Related]
10. Hybrid carbon nanoparticles modified core-shell silica: a high efficiency carbon-based phase for hydrophilic interaction liquid chromatography. Ibrahim ME; Wahab MF; Lucy CA Anal Chim Acta; 2014 Apr; 820():187-94. PubMed ID: 24745753 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of water from aqueous acetonitrile on silica-based stationary phases in aqueous normal-phase liquid chromatography. Soukup J; Jandera P J Chromatogr A; 2014 Dec; 1374():102-111. PubMed ID: 25544246 [TBL] [Abstract][Full Text] [Related]
12. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487 [TBL] [Abstract][Full Text] [Related]
13. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases. Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632 [TBL] [Abstract][Full Text] [Related]
14. Investigation of polar stationary phases for the separation of sympathomimetic drugs with nano-liquid chromatography in hydrophilic interaction liquid chromatography mode. Aturki Z; D'Orazio G; Rocco A; Si-Ahmed K; Fanali S Anal Chim Acta; 2011 Jan; 685(1):103-10. PubMed ID: 21168557 [TBL] [Abstract][Full Text] [Related]
15. The retention behaviour of polar compounds on zirconia based stationary phases under hydrophilic interaction liquid chromatography conditions. Kučera R; Kovaříková P; Klivický M; Klimeš J J Chromatogr A; 2011 Sep; 1218(39):6981-6. PubMed ID: 21880318 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous separation of polar and non-polar mixtures by capillary HPLC based on an ostadecylsilane and taurine derivatized silica continuously packed column. Zhang Y; Zhang Y; Wang G; Chen W; He P; Wang Q Talanta; 2016 Dec; 161():762-768. PubMed ID: 27769478 [TBL] [Abstract][Full Text] [Related]
17. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography. Qiao L; Li H; Shan Y; Wang S; Shi X; Lu X; Xu G J Chromatogr A; 2014 Feb; 1330():40-50. PubMed ID: 24484692 [TBL] [Abstract][Full Text] [Related]
18. New reversed-phase/anion-exchange/hydrophilic interaction mixed-mode stationary phase based on dendritic polymer-modified porous silica. Li Y; Yang J; Jin J; Sun X; Wang L; Chen J J Chromatogr A; 2014 Apr; 1337():133-9. PubMed ID: 24630062 [TBL] [Abstract][Full Text] [Related]
19. Probing the interaction mode in hydrophilic interaction chromatography. Dinh NP; Jonsson T; Irgum K J Chromatogr A; 2011 Sep; 1218(35):5880-91. PubMed ID: 21803363 [TBL] [Abstract][Full Text] [Related]