BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 28247968)

  • 21. Cryo EM structure of intact rotary H
    Nakanishi A; Kishikawa JI; Tamakoshi M; Mitsuoka K; Yokoyama K
    Nat Commun; 2018 Jan; 9(1):89. PubMed ID: 29311594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H+-ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells.
    Sautin YY; Lu M; Gaugler A; Zhang L; Gluck SL
    Mol Cell Biol; 2005 Jan; 25(2):575-89. PubMed ID: 15632060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulated assembly of vacuolar ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway.
    Liberman R; Bond S; Shainheit MG; Stadecker MJ; Forgac M
    J Biol Chem; 2014 Jan; 289(3):1355-63. PubMed ID: 24273170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of mEAK-7 as a human V-ATPase regulator via cryo-EM data mining.
    Wang L; Wu D; Robinson CV; Fu TM
    Proc Natl Acad Sci U S A; 2022 Aug; 119(35):e2203742119. PubMed ID: 35994636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances in Use of Capsule-Based Fluorescent Sensors for Measuring Acidification of Endocytic Compartments in Cells with Altered Expression of V-ATPase Subunit V1G1.
    De Luca M; Ferraro MM; Hartmann R; Rivera-Gil P; Klingl A; Nazarenus M; Ramirez A; Parak WJ; Bucci C; Rinaldi R; del Mercato LL
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15052-60. PubMed ID: 26086317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases.
    Mazhab-Jafari MT; Rubinstein JL
    Sci Adv; 2016 Jul; 2(7):e1600725. PubMed ID: 27532044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and regulation of the vacuolar ATPases.
    Cipriano DJ; Wang Y; Bond S; Hinton A; Jefferies KC; Qi J; Forgac M
    Biochim Biophys Acta; 2008; 1777(7-8):599-604. PubMed ID: 18423392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V(O) motor.
    Lau WC; Rubinstein JL
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1367-72. PubMed ID: 20080582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The 3.5-Å CryoEM Structure of Nanodisc-Reconstituted Yeast Vacuolar ATPase V
    Roh SH; Stam NJ; Hryc CF; Couoh-Cardel S; Pintilie G; Chiu W; Wilkens S
    Mol Cell; 2018 Mar; 69(6):993-1004.e3. PubMed ID: 29526695
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The little we know on the structure and machinery of V-ATPase.
    Saroussi S; Nelson N
    J Exp Biol; 2009 Jun; 212(Pt 11):1604-10. PubMed ID: 19448070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The study of vacuolar-type ATPases by single particle electron microscopy.
    Zhao J; Rubinstein JL
    Biochem Cell Biol; 2014 Dec; 92(6):460-6. PubMed ID: 25350640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast V-ATPase Proteolipid Ring Acts as a Large-conductance Transmembrane Protein Pore.
    Couoh-Cardel S; Hsueh YC; Wilkens S; Movileanu L
    Sci Rep; 2016 Apr; 6():24774. PubMed ID: 27098228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity.
    Muench SP; Huss M; Song CF; Phillips C; Wieczorek H; Trinick J; Harrison MA
    J Mol Biol; 2009 Mar; 386(4):989-99. PubMed ID: 19244615
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vacuolar ATPase depletion contributes to dysregulation of endocytosis in bloodstream forms of Trypanosoma brucei.
    Xu ZS; Li FJ; Hide G; Lun ZR; Lai DH
    Parasit Vectors; 2020 Apr; 13(1):214. PubMed ID: 32334612
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical inhibition of isolated V
    Kishikawa JI; Nakanishi A; Furuta A; Kato T; Namba K; Tamakoshi M; Mitsuoka K; Yokoyama K
    Elife; 2020 Jul; 9():. PubMed ID: 32639230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexibility within the rotor and stators of the vacuolar H+-ATPase.
    Song CF; Papachristos K; Rawson S; Huss M; Wieczorek H; Paci E; Trinick J; Harrison MA; Muench SP
    PLoS One; 2013; 8(12):e82207. PubMed ID: 24312643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunolocalization of the vacuolar-type (H+)-ATPase from clathrin-coated vesicles.
    Márquez-Sterling N; Herman IM; Pesacreta T; Arai H; Terres G; Forgac M
    Eur J Cell Biol; 1991 Oct; 56(1):19-33. PubMed ID: 1839281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of mTOR improves the impairment of acidification in autophagic vesicles caused by hepatic steatosis.
    Nakadera E; Yamashina S; Izumi K; Inami Y; Sato T; Fukushima H; Kon K; Ikejima K; Ueno T; Watanabe S
    Biochem Biophys Res Commun; 2016 Jan; 469(4):1104-10. PubMed ID: 26687947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vacuolar H(+)-ATPase-an enzyme for all seasons.
    Saroussi S; Nelson N
    Pflugers Arch; 2009 Jan; 457(3):581-7. PubMed ID: 18320212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex.
    Oot RA; Huang LS; Berry EA; Wilkens S
    Structure; 2012 Nov; 20(11):1881-92. PubMed ID: 23000382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.