BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28248090)

  • 1. Hierarchical Structural Evolution of Zn
    Liu W; Zhou T; Zheng Y; Liu J; Feng C; Shen Y; Huang Y; Guo Z
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9778-9784. PubMed ID: 28248090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.
    Wang W; Qin J; Cao M
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1388-97. PubMed ID: 26709720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon-Free Porous Zn
    Li HH; Wu XL; Zhang LL; Fan CY; Wang HF; Li XY; Sun HZ; Zhang JP; Yan Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31722-31728. PubMed ID: 27805360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CTAB-assisted growth of self-supported Zn
    Gao G; Xiang Y; Lu S; Dong B; Chen S; Shi L; Wang Y; Wu H; Li Z; Abdelkader A; Xi K; Ding S
    Nanoscale; 2018 Jan; 10(3):921-929. PubMed ID: 29165476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries.
    Zou F; Hu X; Qie L; Jiang Y; Xiong X; Qiao Y; Huang Y
    Nanoscale; 2014 Jan; 6(2):924-30. PubMed ID: 24280782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth of Bouquet-like Zn
    Zhou J; Zhang W; Zhao H; Tian J; Zhu Z; Lin N; Qian Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(25):22371-22379. PubMed ID: 31149799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Anode for Lithium-Ion Batteries Based on Single-Walled Carbon Nanotubes and Graphene: Improved Performance through a Binary Network Design.
    Ren J; Ren RP; Lv YK
    Chem Asian J; 2018 May; 13(9):1223-1227. PubMed ID: 29524325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries.
    Chen J; Ru Q; Mo Y; Hu S; Hou X
    Phys Chem Chem Phys; 2016 Jul; 18(28):18949-57. PubMed ID: 27353639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of loaf-like ZnMn₂O₄ nanorods and their excellent performance in Li-ion batteries.
    Bai Z; Fan N; Sun C; Ju Z; Guo C; Yang J; Qian Y
    Nanoscale; 2013 Mar; 5(6):2442-7. PubMed ID: 23403451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform MnCo
    Kong X; Zhu T; Cheng F; Zhu M; Cao X; Liang S; Cao G; Pan A
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):8730-8738. PubMed ID: 29465224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coaxial Zn2GeO4@carbon nanowires directly grown on Cu foils as high-performance anodes for lithium ion batteries.
    Chen W; Lu L; Maloney S; Yang Y; Wang W
    Phys Chem Chem Phys; 2015 Feb; 17(7):5109-14. PubMed ID: 25600214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Tan HY; Wang HE; Van Tendeloo G; Su BL
    Nanoscale; 2014 Jun; 6(12):6819-27. PubMed ID: 24828316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct large-scale synthesis of 3D hierarchical mesoporous NiO microspheres as high-performance anode materials for lithium ion batteries.
    bai Z; Ju Z; Guo C; Qian Y; Tang B; Xiong S
    Nanoscale; 2014 Mar; 6(6):3268-73. PubMed ID: 24509514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partially crystalline Zn₂GeO₄ nanorod/graphene composites as anode materials for high performance lithium ion batteries.
    Wang R; Wu S; Lv Y; Lin Z
    Langmuir; 2014 Jul; 30(27):8215-20. PubMed ID: 24937774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries.
    Wu X; Li S; Wang B; Liu J; Yu M
    Phys Chem Chem Phys; 2016 Feb; 18(6):4505-12. PubMed ID: 26796603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.
    Huang SZ; Jin J; Cai Y; Li Y; Deng Z; Zeng JY; Liu J; Wang C; Hasan T; Su BL
    Sci Rep; 2015 Oct; 5():14686. PubMed ID: 26439102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage.
    Chen T; Cheng B; Chen R; Hu Y; Lv H; Zhu G; Wang Y; Ma L; Liang J; Tie Z; Jin Z; Liu J
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):26834-26841. PubMed ID: 27627613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous TiNb
    Zhu G; Li Q; Zhao Y; Che R
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41258-41264. PubMed ID: 29111657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supported Zn3P2 nanowire arrays grafted on carbon fabrics as an advanced integrated anode for flexible lithium ion batteries.
    Li W; Gan L; Guo K; Ke L; Wei Y; Li H; Shen G; Zhai T
    Nanoscale; 2016 Apr; 8(16):8666-72. PubMed ID: 27049639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.