These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 28248092)
1. Synthetic Architecture of MgO/C Nanocomposite from Hierarchical-Structured Coordination Polymer toward Enhanced CO Li P; Liu W; Dennis JS; Zeng HC ACS Appl Mater Interfaces; 2017 Mar; 9(11):9592-9602. PubMed ID: 28248092 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO Li P; Zeng HC Environ Sci Technol; 2017 Nov; 51(21):12998-13007. PubMed ID: 28977742 [TBL] [Abstract][Full Text] [Related]
3. Construction of a hierarchical-structured MgO-carbon nanocomposite from a metal-organic complex for efficient CO Li P; Lin Y; Chen R; Li W Dalton Trans; 2020 Apr; 49(16):5183-5191. PubMed ID: 32236274 [TBL] [Abstract][Full Text] [Related]
4. Topotactic Transformation of Solvated MgCr-LDH Nanosheets to Highly Efficient Porous MgO/MgCr Nayak S; Pradhan AC; Parida KM Inorg Chem; 2018 Jul; 57(14):8646-8661. PubMed ID: 29949363 [TBL] [Abstract][Full Text] [Related]
5. Ultrafast and Stable CO Cui H; Zhang Q; Hu Y; Peng C; Fang X; Cheng Z; Galvita VV; Zhou Z ACS Appl Mater Interfaces; 2018 Jun; 10(24):20611-20620. PubMed ID: 29855184 [TBL] [Abstract][Full Text] [Related]
6. Eutectic mixture promoted CO Hiremath V; Trivino MLT; Seo JG J Environ Sci (China); 2019 Feb; 76():80-88. PubMed ID: 30528037 [TBL] [Abstract][Full Text] [Related]
7. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations. Kim K; Han JW; Lee KS; Lee WB Phys Chem Chem Phys; 2014 Dec; 16(45):24818-23. PubMed ID: 25319405 [TBL] [Abstract][Full Text] [Related]
8. Mesoporous carbon nitride supported MgO for enhanced CO Refaat Z; Saied ME; Naga AOAE; Shaban SA; Hassan HB; Shehata MR; Kady FYE Environ Sci Pollut Res Int; 2023 Apr; 30(18):53817-53832. PubMed ID: 36864335 [TBL] [Abstract][Full Text] [Related]
9. NaNO Park SJ; Kim Y; Jones CW ChemSusChem; 2020 Jun; 13(11):2988-2995. PubMed ID: 32166870 [TBL] [Abstract][Full Text] [Related]
10. Advanced High-Temperature CO Nityashree N; Manohara GV; Maroto-Valer MM; Garcia S ACS Appl Mater Interfaces; 2020 Jul; 12(30):33765-33774. PubMed ID: 32609484 [TBL] [Abstract][Full Text] [Related]
11. Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. Liu WJ; Jiang H; Tian K; Ding YW; Yu HQ Environ Sci Technol; 2013 Aug; 47(16):9397-403. PubMed ID: 23895233 [TBL] [Abstract][Full Text] [Related]
12. Magnesium oxide modified nitrogen-doped porous carbon composite as an efficient candidate for high pressure carbon dioxide capture and methane storage. Ghosh S; Sarathi R; Ramaprabhu S J Colloid Interface Sci; 2019 Mar; 539():245-256. PubMed ID: 30583204 [TBL] [Abstract][Full Text] [Related]
13. Understanding the Role of Mono and Ternary Alkali Metal Salts on CO Correia P; Pinheiro CIC; Teixeira P Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138682 [TBL] [Abstract][Full Text] [Related]
14. Structural modification of salt-promoted MgO sorbents for intermediate temperature CO Choi D; Park Y Nanoscale Adv; 2022 Jul; 4(14):3083-3090. PubMed ID: 36133521 [TBL] [Abstract][Full Text] [Related]
15. Asphalt-derived high surface area activated porous carbons for carbon dioxide capture. Jalilov AS; Ruan G; Hwang CC; Schipper DE; Tour JJ; Li Y; Fei H; Samuel EL; Tour JM ACS Appl Mater Interfaces; 2015 Jan; 7(2):1376-82. PubMed ID: 25531980 [TBL] [Abstract][Full Text] [Related]
16. Mesoporous magnesium oxide nanoparticles derived via complexation-combustion for enhanced performance in carbon dioxide capture. Hiremath V; Shavi R; Gil Seo J J Colloid Interface Sci; 2017 Jul; 498():55-63. PubMed ID: 28319841 [TBL] [Abstract][Full Text] [Related]
17. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO Naeem MA; Armutlulu A; Imtiaz Q; Donat F; Schäublin R; Kierzkowska A; Müller CR Nat Commun; 2018 Jun; 9(1):2408. PubMed ID: 29921929 [TBL] [Abstract][Full Text] [Related]
18. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites. Patel HA; Yavuz CT Faraday Discuss; 2015; 183():401-12. PubMed ID: 26388535 [TBL] [Abstract][Full Text] [Related]
19. Porous spherical CaO-based sorbents via PSS-assisted fast precipitation for CO2 capture. Wang S; Fan L; Li C; Zhao Y; Ma X ACS Appl Mater Interfaces; 2014 Oct; 6(20):18072-7. PubMed ID: 25252009 [TBL] [Abstract][Full Text] [Related]
20. Encapsulation of Phase-Changing Eutectic Salts in Magnesium Oxide Fibers for High-Temperature Carbon Dioxide Capture: Beyond the Capacity-Stability Tradeoff. Triviño MLT; Jeon H; Lim ACS; Hiremath V; Sekine Y; Seo JG ACS Appl Mater Interfaces; 2020 Jan; 12(1):518-526. PubMed ID: 31808675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]