These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 28248116)
1. Fabrication of Ellipsoidal Silica Yolk-Shell Magnetic Structures with Extremely Stable Au Nanoparticles as Highly Reactive and Recoverable Catalysts. Fang J; Zhang Y; Zhou Y; Zhao S; Zhang C; Zhang H; Sheng X; Wang K Langmuir; 2017 Mar; 33(11):2698-2708. PubMed ID: 28248116 [TBL] [Abstract][Full Text] [Related]
2. In-situ formation of supported Au nanoparticles in hierarchical yolk-shell CeO Fang J; Zhang Y; Zhou Y; Zhao S; Zhang C; Zhang H; Sheng X J Colloid Interface Sci; 2017 Feb; 488():196-206. PubMed ID: 27835812 [TBL] [Abstract][Full Text] [Related]
3. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. Zhu H; Liang C; Yan W; Overbury SH; Dai S J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335 [TBL] [Abstract][Full Text] [Related]
4. Unexpectedly high thermal stability of Au nanotriangle@mSiO Xie X; Albrecht W; van Huis MA; van Blaaderen A Nanoscale; 2024 Feb; 16(9):4787-4795. PubMed ID: 38305037 [TBL] [Abstract][Full Text] [Related]
5. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
6. In situ intercalation of Au nanoparticles and magnetic γ-Fe Zhou S; Jin W; Ding Y; Shao B; Wang B; Hu X; Kong Y Dalton Trans; 2018 Dec; 47(47):16862-16875. PubMed ID: 30289145 [TBL] [Abstract][Full Text] [Related]
7. The fabrication of hollow ZrO Yang F; Wu C; Yu H; Wang S; Li T; Yan B; Yin H Nanoscale; 2021 Apr; 13(14):6856-6862. PubMed ID: 33885486 [TBL] [Abstract][Full Text] [Related]
8. Au nanoparticle@hollow mesoporous carbon with FeCo/graphitic shell nanoparticls as a magnetically recyclable yolk-shell nanocatalyst for catalytic reduction of nitroaromatics. Hong Y; Choi IA; Seo WS Sci Rep; 2018 May; 8(1):7469. PubMed ID: 29748617 [TBL] [Abstract][Full Text] [Related]
9. In Situ Confined Growth Based on a Self-Templating Reduction Strategy of Highly Dispersed Ni Nanoparticles in Hierarchical Yolk-Shell Fe@SiO Jiao J; Wang H; Guo W; Li R; Tian K; Xu Z; Jia Y; Wu Y; Cao L Chem Asian J; 2016 Dec; 11(24):3534-3540. PubMed ID: 27787941 [TBL] [Abstract][Full Text] [Related]
10. Design of highly sensitive and selective Au@NiO yolk-shell nanoreactors for gas sensor applications. Rai P; Yoon JW; Jeong HM; Hwang SJ; Kwak CH; Lee JH Nanoscale; 2014 Jul; 6(14):8292-9. PubMed ID: 24933405 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of 3-D confined spaces with Au NPs: Superior dispersion and catalytic activity. Subhan F; Aslam S; Yan Z; Ahmad A; Etim UJ J Colloid Interface Sci; 2019 Mar; 540():371-381. PubMed ID: 30660794 [TBL] [Abstract][Full Text] [Related]
12. Uniform Ni/SiO2@Au magnetic hollow microspheres: rational design and excellent catalytic performance in 4-nitrophenol reduction. Zhang S; Gai S; He F; Dai Y; Gao P; Li L; Chen Y; Yang P Nanoscale; 2014 Jun; 6(12):7025-32. PubMed ID: 24841736 [TBL] [Abstract][Full Text] [Related]
13. General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Zhang L; Wang T; Yang L; Liu C; Wang C; Liu H; Wang YA; Su Z Chemistry; 2012 Sep; 18(39):12512-21. PubMed ID: 22907903 [TBL] [Abstract][Full Text] [Related]
14. Plasmolysis-Inspired Nanoengineering of Functional Yolk-Shell Microspheres with Magnetic Core and Mesoporous Silica Shell. Yue Q; Li J; Zhang Y; Cheng X; Chen X; Pan P; Su J; Elzatahry AA; Alghamdi A; Deng Y; Zhao D J Am Chem Soc; 2017 Nov; 139(43):15486-15493. PubMed ID: 29016118 [TBL] [Abstract][Full Text] [Related]
15. Facile synthesis of yolk-shell magnetic mesoporous carbon microspheres for efficient enrichment of low abundance peptides. Wan H; Qin H; Xiong Z; Zhang W; Zou H Nanoscale; 2013 Nov; 5(22):10936-44. PubMed ID: 24061763 [TBL] [Abstract][Full Text] [Related]
16. Synthesis and characterization of hollow ZrO(2)TiO(2)/Au spheres as a highly thermal stability nanocatalyst. Huang M; Zhang Y; Zhou Y; Zhang C; Zhao S; Fang J; Gao Y; Sheng X J Colloid Interface Sci; 2017 Jul; 497():23-32. PubMed ID: 28260672 [TBL] [Abstract][Full Text] [Related]
17. Porous-Carbon-Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. Wang Q; Luo W; Chen X; Fan J; Jiang W; Wang L; Jiang W; Zhang WX; Yang J Chemistry; 2018 Oct; 24(58):15663-15668. PubMed ID: 30113103 [TBL] [Abstract][Full Text] [Related]
18. Single-step coating of mesoporous SiO Xie X; van Huis MA; van Blaaderen A Nanoscale; 2021 Jun; 13(24):10925-10932. PubMed ID: 34132311 [TBL] [Abstract][Full Text] [Related]
19. Fabrication of thermally stable and active bimetallic Au-Ag nanoparticles stabilized on inner wall of mesoporous silica shell. Chen Y; Wang Q; Wang T Dalton Trans; 2013 Oct; 42(38):13940-7. PubMed ID: 23925801 [TBL] [Abstract][Full Text] [Related]
20. A controllable asymmetrical/symmetrical coating strategy for architectural mesoporous organosilica nanostructures. Wang X; He Y; Liu C; Liu Y; Qiao ZA; Huo Q Nanoscale; 2016 Jul; 8(28):13581-8. PubMed ID: 27341315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]