BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28248297)

  • 21. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Promoter architecture and response to a positive regulator of archaeal transcription.
    Ouhammouch M; Langham GE; Hausner W; Simpson AJ; El-Sayed NM; Geiduschek EP
    Mol Microbiol; 2005 May; 56(3):625-37. PubMed ID: 15819620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Architecture of the RNA polymerase-Spt4/5 complex and basis of universal transcription processivity.
    Martinez-Rucobo FW; Sainsbury S; Cheung AC; Cramer P
    EMBO J; 2011 Apr; 30(7):1302-10. PubMed ID: 21386817
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS.
    Nagy J; Grohmann D; Cheung AC; Schulz S; Smollett K; Werner F; Michaelis J
    Nat Commun; 2015 Jan; 6():6161. PubMed ID: 25635909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin.
    Sanders TJ; Lammers M; Marshall CJ; Walker JE; Lynch ER; Santangelo TJ
    Mol Microbiol; 2019 Mar; 111(3):784-797. PubMed ID: 30592095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recruitment of TBP or TFIIB to a promoter proximal position leads to stimulation of RNA polymerase II transcription without activator proteins both in vivo and in vitro.
    Huh JR; Park JM; Kim M; Carlson BA; Hatfield DL; Lee BJ
    Biochem Biophys Res Commun; 1999 Mar; 256(1):45-51. PubMed ID: 10066420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Architecture of the RNA polymerase II elongation complex: new insights into Spt4/5 and Elf1.
    Ehara H; Sekine SI
    Transcription; 2018; 9(5):286-291. PubMed ID: 29624124
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms.
    Bushnell DA; Westover KD; Davis RE; Kornberg RD
    Science; 2004 Feb; 303(5660):983-8. PubMed ID: 14963322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NusG Is a Sequence-specific RNA Polymerase Pause Factor That Binds to the Non-template DNA within the Paused Transcription Bubble.
    Yakhnin AV; Murakami KS; Babitzke P
    J Biol Chem; 2016 Mar; 291(10):5299-308. PubMed ID: 26742846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcription initiation factor TBP: old friend new questions.
    Kramm K; Engel C; Grohmann D
    Biochem Soc Trans; 2019 Feb; 47(1):411-423. PubMed ID: 30710057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.
    Guo M; Xu F; Yamada J; Egelhofer T; Gao Y; Hartzog GA; Teng M; Niu L
    Structure; 2008 Nov; 16(11):1649-58. PubMed ID: 19000817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcription initiation in Archaea: facts, factors and future aspects.
    Soppa J
    Mol Microbiol; 1999 Mar; 31(5):1295-305. PubMed ID: 10200952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
    Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A
    Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Archaeal RNA polymerase arrests transcription at DNA lesions.
    Gehring AM; Santangelo TJ
    Transcription; 2017; 8(5):288-296. PubMed ID: 28598254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanism of autoregulation by an archaeal transcriptional repressor.
    Bell SD; Jackson SP
    J Biol Chem; 2000 Oct; 275(41):31624-9. PubMed ID: 10900210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of Methanococcus jannaschii TATA box-binding protein.
    Adachi N; Senda M; Natsume R; Senda T; Horikoshi M
    Genes Cells; 2008 Nov; 13(11):1127-40. PubMed ID: 19090808
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways.
    Gietl A; Holzmeister P; Blombach F; Schulz S; von Voithenberg LV; Lamb DC; Werner F; Tinnefeld P; Grohmann D
    Nucleic Acids Res; 2014 Jun; 42(10):6219-31. PubMed ID: 24744242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Archaeal transcription and its regulators.
    Geiduschek EP; Ouhammouch M
    Mol Microbiol; 2005 Jun; 56(6):1397-407. PubMed ID: 15916593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determinants of transcription initiation by archaeal RNA polymerase.
    Bartlett MS
    Curr Opin Microbiol; 2005 Dec; 8(6):677-84. PubMed ID: 16249119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.