These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 28248381)

  • 21. Application of Fresnel diffraction from the edge of a transparent plate to measurement of glucose concentration.
    Bahmanpour S; Mahmoudi A
    Appl Opt; 2021 Apr; 60(10):2893-2897. PubMed ID: 33798169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of the index inhomogeneity of transparent isotropic optical material with a dual Sagnac interferometer.
    Chatterjee S; Kumar YP
    Appl Opt; 2013 Jul; 52(20):4820-6. PubMed ID: 23852194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of the degree of spatial coherence in a Michelson interferometer.
    Françon M; Mallick S
    Appl Opt; 1967 May; 6(5):873-6. PubMed ID: 20057866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Method to obtain a clear fringe pattern with a zone-plate interferometer.
    Nomura T; Kamiya K; Miyashiro H; Yoshikawa K; Tashiro H
    Appl Opt; 1995 May; 34(13):2187-93. PubMed ID: 21037765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The determination of the absolute contours of optical flats.
    Primak W
    Appl Opt; 1967 Nov; 6(11):1917-23. PubMed ID: 20062329
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of interference fringes of equal inclination on the reflection of laser beams from plane parallel plates.
    Hillenkamp F
    Appl Opt; 1969 Feb; 8(2):351-4. PubMed ID: 20072226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Fresnel diffraction from a phase step to the measurement of film thickness.
    Taghi Tavassoly M; Moaddel Haghighi I; Hassani K
    Appl Opt; 2009 Oct; 48(29):5497-501. PubMed ID: 19823232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direction-resolved homodyne laser-Doppler vibrometry by analyzing space-time fringes created by the successive 1D intensity profiles of the interference fringes.
    Daemi MH; Rasouli S
    Opt Lett; 2019 Dec; 44(23):5824-5827. PubMed ID: 31774789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Determination of refractive index and film thickness from interference fringes.
    Harrick NJ
    Appl Opt; 1971 Oct; 10(10):2344-9. PubMed ID: 20111327
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid film thickness measurement with moiré fringes.
    Browne AL
    Appl Opt; 1972 Oct; 11(10):2269-77. PubMed ID: 20119324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser beam diffraction at the edge of a film and application to thin film metrology.
    Do PA; Touaibia M; Haché A
    Appl Opt; 2013 Aug; 52(24):5979-84. PubMed ID: 24085002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-plane displacement measurement in vortex metrology by synthetic network correlation fringes.
    Angel-Toro L; Sierra-Sosa D; Tebaldi M; Bolognini N
    J Opt Soc Am A Opt Image Sci Vis; 2013 Mar; 30(3):462-9. PubMed ID: 23456122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental observation of a strange temporal oscillation of X-ray Pendellösung fringes.
    Yoshimura J; Hirano K
    J Synchrotron Radiat; 2009 Sep; 16(Pt 5):601-9. PubMed ID: 19713632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compensation of spacer-thickness variations in a holographic Fabry-Perot filter.
    Sica L; Aye T; Tengara I; Wexler B
    Appl Opt; 1994 Aug; 33(22):5021-8. PubMed ID: 20935882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-projectiveness of X-ray Pendellösung-fringed diffraction images.
    Yoshimura J
    J Synchrotron Radiat; 2000 Nov; 7(Pt 6):374-81. PubMed ID: 16609224
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of an ultrasonic dermal scanner for skin thickness measurements.
    Kong L; Caspall J; Duckworth M; Sprigle S
    Med Eng Phys; 2008 Jul; 30(6):804-7. PubMed ID: 18061508
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laser ultrasonic inspection of plates using zero-group velocity lamb modes.
    Clorennec D; Prada C; Royer D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1125-32. PubMed ID: 20442022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ellipsometric measurement technique for a modified Otto configuration used for observing surface-plasmon resonance.
    Iwata T; Mizutani Y
    Opt Express; 2010 Jul; 18(14):14480-7. PubMed ID: 20639933
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement of resonant mode of piezoelectric thin plate using speckle interferometry and frequency-sweeping function.
    Chang CY; Ma CC
    Rev Sci Instrum; 2012 Sep; 83(9):095004. PubMed ID: 23020409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast characterization of aluminum plates with TV-holography measurements of the frequency spectrum of multimode, quasi- monochromatic Lamb waves.
    Deán-Ben XL; Trillo C; Doval AF; Fernández JL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1222-31. PubMed ID: 21693404
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.