These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 28248485)
1. Functionalized Metal-Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. Chen J; Zhang Z; Bao Z; Su Y; Xing H; Yang Q; Ren Q ACS Appl Mater Interfaces; 2017 Mar; 9(11):9772-9777. PubMed ID: 28248485 [TBL] [Abstract][Full Text] [Related]
2. Cooperative Interplay of Brønsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C-H Bonds. Chen J; Zhang Y; Chen X; Dai S; Bao Z; Yang Q; Ren Q; Zhang Z ACS Appl Mater Interfaces; 2021 Mar; 13(9):10845-10854. PubMed ID: 33648335 [TBL] [Abstract][Full Text] [Related]
3. MIL-101-SO3H: a highly efficient Brønsted acid catalyst for heterogeneous alcoholysis of epoxides under ambient conditions. Zhou YX; Chen YZ; Hu Y; Huang G; Yu SH; Jiang HL Chemistry; 2014 Nov; 20(46):14976-80. PubMed ID: 25291973 [TBL] [Abstract][Full Text] [Related]
4. Brønsted-Lewis dual acid sites in a chromium-based metal-organic framework for cooperative catalysis: Highly efficient synthesis of quinazolin-(4H)-1-one derivatives. Oudi S; Oveisi AR; Daliran S; Khajeh M; Teymoori E J Colloid Interface Sci; 2020 Mar; 561():782-792. PubMed ID: 31761467 [TBL] [Abstract][Full Text] [Related]
5. Metal-organic framework based upon the synergy of a Brønsted acid framework and Lewis acid centers as a highly efficient heterogeneous catalyst for fixed-bed reactions. Li B; Leng K; Zhang Y; Dynes JJ; Wang J; Hu Y; Ma D; Shi Z; Zhu L; Zhang D; Sun Y; Chrzanowski M; Ma S J Am Chem Soc; 2015 Apr; 137(12):4243-8. PubMed ID: 25773275 [TBL] [Abstract][Full Text] [Related]
6. Encapsulation of Crabtree's Catalyst in Sulfonated MIL-101(Cr): Enhancement of Stability and Selectivity between Competing Reaction Pathways by the MOF Chemical Microenvironment. Grigoropoulos A; McKay AI; Katsoulidis AP; Davies RP; Haynes A; Brammer L; Xiao J; Weller AS; Rosseinsky MJ Angew Chem Int Ed Engl; 2018 Apr; 57(17):4532-4537. PubMed ID: 29377466 [TBL] [Abstract][Full Text] [Related]
7. Robust and Porous β-Diketiminate-Functionalized Metal-Organic Frameworks for Earth-Abundant-Metal-Catalyzed C-H Amination and Hydrogenation. Thacker NC; Lin Z; Zhang T; Gilhula JC; Abney CW; Lin W J Am Chem Soc; 2016 Mar; 138(10):3501-9. PubMed ID: 26885768 [TBL] [Abstract][Full Text] [Related]
8. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid. Chen J; Wang S; Huang J; Chen L; Ma L; Huang X ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979 [TBL] [Abstract][Full Text] [Related]
9. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks. Rojas-Buzo S; García-García P; Corma A ChemSusChem; 2018 Jan; 11(2):432-438. PubMed ID: 29139603 [TBL] [Abstract][Full Text] [Related]
10. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols. Herbst A; Khutia A; Janiak C Inorg Chem; 2014 Jul; 53(14):7319-33. PubMed ID: 25006999 [TBL] [Abstract][Full Text] [Related]
11. Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal-organic frameworks toward one-pot tandem reactions. Liu Y; Ma XC; Chang GG; Ke SC; Xia T; Hu ZY; Yang XY J Colloid Interface Sci; 2019 Dec; 557():207-215. PubMed ID: 31521970 [TBL] [Abstract][Full Text] [Related]
12. Promoting Frustrated Lewis Pairs for Heterogeneous Chemoselective Hydrogenation via the Tailored Pore Environment within Metal-Organic Frameworks. Niu Z; Zhang W; Lan PC; Aguila B; Ma S Angew Chem Int Ed Engl; 2019 May; 58(22):7420-7424. PubMed ID: 30946520 [TBL] [Abstract][Full Text] [Related]
13. Benzothiazoline: versatile hydrogen donor for organocatalytic transfer hydrogenation. Zhu C; Saito K; Yamanaka M; Akiyama T Acc Chem Res; 2015 Feb; 48(2):388-98. PubMed ID: 25611073 [TBL] [Abstract][Full Text] [Related]
14. Phosphoric acid catalyzed enantioselective transfer hydrogenation of imines: a density functional theory study of reaction mechanism and the origins of enantioselectivity. Marcelli T; Hammar P; Himo F Chemistry; 2008; 14(28):8562-71. PubMed ID: 18683177 [TBL] [Abstract][Full Text] [Related]
15. Theoretical study of the mechanism of hantzsch ester hydrogenation of imines catalyzed by chiral BINOL-phosphoric acids. Simón L; Goodman JM J Am Chem Soc; 2008 Jul; 130(27):8741-7. PubMed ID: 18543923 [TBL] [Abstract][Full Text] [Related]
16. Sulfonic acid-functionalized k-carrageenan/Cr-based metal-organic framework: An efficient and recyclable catalyst for fructose conversion to 5-hydroxymethylfurfural. Darvishi S; Sadjadi S; Monflier E; Heydari A; Heravi MM Int J Biol Macromol; 2024 Apr; 264(Pt 1):130555. PubMed ID: 38430997 [TBL] [Abstract][Full Text] [Related]
17. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Zhao M; Yuan K; Wang Y; Li G; Guo J; Gu L; Hu W; Zhao H; Tang Z Nature; 2016 Nov; 539(7627):76-80. PubMed ID: 27706142 [TBL] [Abstract][Full Text] [Related]
18. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Zhao M; Ou S; Wu CD Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017 [TBL] [Abstract][Full Text] [Related]
19. Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Rueping M; Sugiono E; Azap C; Theissmann T; Bolte M Org Lett; 2005 Aug; 7(17):3781-3. PubMed ID: 16092874 [TBL] [Abstract][Full Text] [Related]
20. Brønsted Acid-Catalyzed Transfer Hydrogenation of Imines and Alkenes Using Cyclohexa-1,4-dienes as Dihydrogen Surrogates. Chatterjee I; Oestreich M Org Lett; 2016 May; 18(10):2463-6. PubMed ID: 27181437 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]