These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
364 related articles for article (PubMed ID: 28248593)
1. Reactive oxygen species generation by copper(II) oxide nanoparticles determined by DNA damage assays and EPR spectroscopy. Angelé-Martínez C; Nguyen KV; Ameer FS; Anker JN; Brumaghim JL Nanotoxicology; 2017 Mar; 11(2):278-288. PubMed ID: 28248593 [TBL] [Abstract][Full Text] [Related]
2. Polyphenol effects on CuO-nanoparticle-mediated DNA damage, reactive oxygen species generation, and fibroblast cell death. Angelé-Martínez C; Ameer FS; Raval YS; Huang G; Tzeng TJ; Anker JN; Brumaghim JL Toxicol In Vitro; 2022 Feb; 78():105252. PubMed ID: 34624480 [TBL] [Abstract][Full Text] [Related]
3. Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of Cu ions and possible mechanisms of action. Bondarenko O; Ivask A; Käkinen A; Kahru A Environ Pollut; 2012 Oct; 169():81-9. PubMed ID: 22694973 [TBL] [Abstract][Full Text] [Related]
4. New insights in the acute toxic/genotoxic effects of CuO nanoparticles in the in vivo Drosophila model. Alaraby M; Hernández A; Marcos R Nanotoxicology; 2016 Aug; 10(6):749-60. PubMed ID: 26634780 [TBL] [Abstract][Full Text] [Related]
5. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells. Rodhe Y; Skoglund S; Odnevall Wallinder I; Potácová Z; Möller L Toxicol In Vitro; 2015 Oct; 29(7):1711-9. PubMed ID: 26028147 [TBL] [Abstract][Full Text] [Related]
6. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells. Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626 [TBL] [Abstract][Full Text] [Related]
7. Biological and environmental transformations of copper-based nanomaterials. Wang Z; von dem Bussche A; Kabadi PK; Kane AB; Hurt RH ACS Nano; 2013 Oct; 7(10):8715-27. PubMed ID: 24032665 [TBL] [Abstract][Full Text] [Related]
8. Toxicity of CuO nanoparticles to yeast Saccharomyces cerevisiae BY4741 wild-type and its nine isogenic single-gene deletion mutants. Kasemets K; Suppi S; Künnis-Beres K; Kahru A Chem Res Toxicol; 2013 Mar; 26(3):356-67. PubMed ID: 23339633 [TBL] [Abstract][Full Text] [Related]
9. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells. Strauch BM; Niemand RK; Winkelbeiner NL; Hartwig A Part Fibre Toxicol; 2017 Aug; 14(1):28. PubMed ID: 28764715 [TBL] [Abstract][Full Text] [Related]
10. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Karlsson HL; Cronholm P; Gustafsson J; Möller L Chem Res Toxicol; 2008 Sep; 21(9):1726-32. PubMed ID: 18710264 [TBL] [Abstract][Full Text] [Related]
11. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution. Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388 [TBL] [Abstract][Full Text] [Related]
12. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Wang Z; Li N; Zhao J; White JC; Qu P; Xing B Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560 [TBL] [Abstract][Full Text] [Related]
13. Surface Modification by Media Organics Reduces the Bacterio-toxicity of Cupric Oxide Nanoparticle against Escherichia coli. Chakraborty R; Basu T Sci Rep; 2019 Oct; 9(1):15364. PubMed ID: 31653977 [TBL] [Abstract][Full Text] [Related]
14. Elucidating the catalytic degradation of enrofloxacin by copper oxide nanoparticles through the identification of the reactive oxygen species. Dror I; Fink L; Weiner L; Berkowitz B Chemosphere; 2020 Nov; 258():127266. PubMed ID: 32535443 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability. Semisch A; Ohle J; Witt B; Hartwig A Part Fibre Toxicol; 2014 Feb; 11():10. PubMed ID: 24520990 [TBL] [Abstract][Full Text] [Related]
16. Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Shaw AK; Hossain Z Chemosphere; 2013 Oct; 93(6):906-15. PubMed ID: 23791109 [TBL] [Abstract][Full Text] [Related]
17. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals. Ivask A; Bondarenko O; Jepihhina N; Kahru A Anal Bioanal Chem; 2010 Sep; 398(2):701-16. PubMed ID: 20623373 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study. Simunkova M; Barbierikova Z; Jomova K; Hudecova L; Lauro P; Alwasel SH; Alhazza I; Rhodes CJ; Valko M Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562744 [TBL] [Abstract][Full Text] [Related]
19. Interactive effects of copper oxide nanoparticles and light to green alga Chlamydomonas reinhardtii. Cheloni G; Marti E; Slaveykova VI Aquat Toxicol; 2016 Jan; 170():120-128. PubMed ID: 26655656 [TBL] [Abstract][Full Text] [Related]
20. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Wang S; Liu H; Zhang Y; Xin H Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]