These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28248638)

  • 1. Effects of second neighbor interactions on skyrmion lattices in chiral magnets.
    Oliveira EAS; Silva RL; Silva RC; Pereira AR
    J Phys Condens Matter; 2017 May; 29(20):205801. PubMed ID: 28248638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precursor skyrmion states near the ordering temperatures of chiral magnets.
    Leonov AO
    Phys Chem Chem Phys; 2023 Nov; 25(42):28691-28702. PubMed ID: 37849353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical and skyrmion lattice phases in three-dimensional chiral magnets: Effect of anisotropic interactions.
    Chen J; Cai WP; Qin MH; Dong S; Lu XB; Gao XS; Liu JM
    Sci Rep; 2017 Aug; 7(1):7392. PubMed ID: 28785054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disordered skyrmion phase stabilized by magnetic frustration in a chiral magnet.
    Karube K; White JS; Morikawa D; Dewhurst CD; Cubitt R; Kikkawa A; Yu X; Tokunaga Y; Arima TH; Rønnow HM; Tokura Y; Taguchi Y
    Sci Adv; 2018 Sep; 4(9):eaar7043. PubMed ID: 30225364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions.
    Díaz SA; Troncoso RE
    J Phys Condens Matter; 2016 Oct; 28(42):426005. PubMed ID: 27588612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strain-Driven Dzyaloshinskii-Moriya Interaction for Room-Temperature Magnetic Skyrmions.
    Zhang Y; Liu J; Dong Y; Wu S; Zhang J; Wang J; Lu J; Rückriegel A; Wang H; Duine R; Yu H; Luo Z; Shen K; Zhang J
    Phys Rev Lett; 2021 Sep; 127(11):117204. PubMed ID: 34558947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous skyrmionic lattice from anisotropic symmetric exchange in a Ni-halide monolayer.
    Amoroso D; Barone P; Picozzi S
    Nat Commun; 2020 Nov; 11(1):5784. PubMed ID: 33188198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization and Reversal of Skyrmion Lattice in Ta/CoFeB/MgO Multilayers.
    Qin Z; Wang Y; Zhu S; Jin C; Fu J; Liu Q; Cao J
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36556-36563. PubMed ID: 30277060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The spin structures of interlayer coupled magnetic films with opposite chirality.
    Kang SP; Kim NJ; Kwon HY; Choi JW; Min BC; Won C
    Sci Rep; 2018 Feb; 8(1):2361. PubMed ID: 29402938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sum rule of uniaxial anisotropy and external magnetic field for formation of Néel-type skyrmion lattices in two-dimensional ferromagnets.
    Liu Z; Ian H
    J Phys Condens Matter; 2019 May; 31(21):215302. PubMed ID: 30790777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flat Bands, Indirect Gaps, and Unconventional Spin-Wave Behavior Induced by a Periodic Dzyaloshinskii-Moriya Interaction.
    Gallardo RA; Cortés-Ortuño D; Schneider T; Roldán-Molina A; Ma F; Troncoso RE; Lenz K; Fangohr H; Lindner J; Landeros P
    Phys Rev Lett; 2019 Feb; 122(6):067204. PubMed ID: 30822086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creating an artificial two-dimensional Skyrmion crystal by nanopatterning.
    Sun L; Cao RX; Miao BF; Feng Z; You B; Wu D; Zhang W; Hu A; Ding HF
    Phys Rev Lett; 2013 Apr; 110(16):167201. PubMed ID: 23679635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral spin pairing in helical magnets.
    Onoda S; Nagaosa N
    Phys Rev Lett; 2007 Jul; 99(2):027206. PubMed ID: 17678255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3.
    Yang JH; Li ZL; Lu XZ; Whangbo MH; Wei SH; Gong XG; Xiang HJ
    Phys Rev Lett; 2012 Sep; 109(10):107203. PubMed ID: 23005322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation and Annihilation of Skyrmions in the Frustrated Magnets with Competing Exchange Interactions.
    Hu Y; Chi X; Li X; Liu Y; Du A
    Sci Rep; 2017 Nov; 7(1):16079. PubMed ID: 29167506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skyrmions at vanishingly small Dzyaloshinskii-Moriya interaction or zero magnetic field.
    Bera S; Mandal SS
    J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33848984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolated skyrmion, skyrmion lattice and antiskyrmion lattice creation through magnetization reversal in Co/Pd nanostructure.
    Kandukuri S; Murthy VSN; Thiruvikraman PK
    Sci Rep; 2021 Sep; 11(1):18945. PubMed ID: 34556719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet.
    Khanh ND; Nakajima T; Yu X; Gao S; Shibata K; Hirschberger M; Yamasaki Y; Sagayama H; Nakao H; Peng L; Nakajima K; Takagi R; Arima TH; Tokura Y; Seki S
    Nat Nanotechnol; 2020 Jun; 15(6):444-449. PubMed ID: 32424341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of classicality in alternating spin-12/spin-1 chain, in the presence of next-neighbor couplings and Dzyaloshinskii-Moriya interactions.
    Lahiri A; Pati SK
    J Phys Condens Matter; 2022 Feb; 34(17):. PubMed ID: 35021160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of Skyrmion Attraction in Chiral Magnets near the Ordering Temperatures.
    Leonov AO; Rößler UK
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.