These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28248638)

  • 61. Collective antiskyrmion-mediated phase transition and defect-induced melting in chiral magnetic films.
    Pierobon L; Moutafis C; Li Y; Löffler JF; Charilaou M
    Sci Rep; 2018 Nov; 8(1):16675. PubMed ID: 30420698
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Large anisotropic deformation of skyrmions in strained crystal.
    Shibata K; Iwasaki J; Kanazawa N; Aizawa S; Tanigaki T; Shirai M; Nakajima T; Kubota M; Kawasaki M; Park HS; Shindo D; Nagaosa N; Tokura Y
    Nat Nanotechnol; 2015 Jul; 10(7):589-92. PubMed ID: 26030654
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kagome Lattice Promotes Chiral Spin Fluctuations.
    Kolincio KK; Hirschberger M; Masell J; Arima TH; Nagaosa N; Tokura Y
    Phys Rev Lett; 2023 Mar; 130(13):136701. PubMed ID: 37067304
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tunable Magnetic Antiskyrmion Size and Helical Period from Nanometers to Micrometers in a D
    Ma T; Sharma AK; Saha R; Srivastava AK; Werner P; Vir P; Kumar V; Felser C; Parkin SSP
    Adv Mater; 2020 Jul; 32(28):e2002043. PubMed ID: 32484269
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds.
    Pfleiderer C; Adams T; Bauer A; Biberacher W; Binz B; Birkelbach F; Böni P; Franz C; Georgii R; Janoschek M; Jonietz F; Keller T; Ritz R; Mühlbauer S; Münzer W; Neubauer A; Pedersen B; Rosch A
    J Phys Condens Matter; 2010 Apr; 22(16):164207. PubMed ID: 21386413
    [TBL] [Abstract][Full Text] [Related]  

  • 66. "Polymerization" of Bimerons in Quasi-Two-Dimensional Chiral Magnets with Easy-Plane Anisotropy.
    Mukai N; Leonov AO
    Nanomaterials (Basel); 2024 Mar; 14(6):. PubMed ID: 38535652
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Coherent two-dimensional THz magnetic resonance spectroscopies for molecular magnets: Analysis of Dzyaloshinskii-Moriya interaction.
    Zhang J; Tanimura Y
    J Chem Phys; 2023 Jul; 159(1):. PubMed ID: 37403862
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Light-Induced Anisotropic Skyrmion and Stripe Phases in a Rashba Ferromagnet.
    Yudin D; Gulevich DR; Titov M
    Phys Rev Lett; 2017 Oct; 119(14):147202. PubMed ID: 29053307
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Giant ferroelectric polarization of CaMn7O12 induced by a combined effect of Dzyaloshinskii-Moriya interaction and exchange striction.
    Lu XZ; Whangbo MH; Dong S; Gong XG; Xiang HJ
    Phys Rev Lett; 2012 May; 108(18):187204. PubMed ID: 22681112
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Dynamics of the entanglement and teleportation of thermal state of a spin chain with multiple interactions.
    Redwan A; Abdel-Aty AH; Zidan N; El-Shahat T
    Chaos; 2019 Jan; 29(1):013138. PubMed ID: 30709138
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling longitudinal spin fluctuations in chiral magnets.
    Belemuk AM; Stishov SM
    J Phys Condens Matter; 2019 Apr; 31(13):135801. PubMed ID: 30669137
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer.
    Matsuno J; Ogawa N; Yasuda K; Kagawa F; Koshibae W; Nagaosa N; Tokura Y; Kawasaki M
    Sci Adv; 2016 Jul; 2(7):e1600304. PubMed ID: 27419236
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phase diagram of chiral magnets via Green's function method.
    Li XB; Cao Y; Bai N
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35764077
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase of Mn(1-x) Fe(x)Ge.
    Gayles J; Freimuth F; Schena T; Lani G; Mavropoulos P; Duine RA; Blügel S; Sinova J; Mokrousov Y
    Phys Rev Lett; 2015 Jul; 115(3):036602. PubMed ID: 26230813
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Direct observation of Σ7 domain boundary core structure in magnetic skyrmion lattice.
    Matsumoto T; So YG; Kohno Y; Sawada H; Ikuhara Y; Shibata N
    Sci Adv; 2016 Feb; 2(2):e1501280. PubMed ID: 26933690
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Chiral magnetic order at surfaces driven by inversion asymmetry.
    Bode M; Heide M; von Bergmann K; Ferriani P; Heinze S; Bihlmayer G; Kubetzka A; Pietzsch O; Blügel S; Wiesendanger R
    Nature; 2007 May; 447(7141):190-3. PubMed ID: 17495922
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulating the magnetic skyrmion in a confined nanochannel under a gradient magnetic field.
    Chen W; Tao Z; Zhao R; Zhang X
    Nanotechnology; 2019 Oct; 30(41):415401. PubMed ID: 31295727
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental Observation of Single Skyrmion Signatures in a Magnetic Tunnel Junction.
    Penthorn NE; Hao X; Wang Z; Huai Y; Jiang HW
    Phys Rev Lett; 2019 Jun; 122(25):257201. PubMed ID: 31347909
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Berry phase theory of Dzyaloshinskii-Moriya interaction and spin-orbit torques.
    Freimuth F; Blügel S; Mokrousov Y
    J Phys Condens Matter; 2014 Mar; 26(10):104202. PubMed ID: 24552898
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Dzyaloshinskii-Moriya interaction in transport through single-molecule transistors.
    Herzog S; Wegewijs MR
    Nanotechnology; 2010 Jul; 21(27):274010. PubMed ID: 20571197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.