BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28248966)

  • 1. A magnesium-induced triplex pre-organizes the SAM-II riboswitch.
    Roy S; Lammert H; Hayes RL; Chen B; LeBlanc R; Dayie TK; Onuchic JN; Sanbonmatsu KY
    PLoS Comput Biol; 2017 Mar; 13(3):e1005406. PubMed ID: 28248966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.
    Roy S; Onuchic JN; Sanbonmatsu KY
    Biophys J; 2017 Jul; 113(2):348-359. PubMed ID: 28746845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.
    Hennelly SP; Novikova IV; Sanbonmatsu KY
    Nucleic Acids Res; 2013 Feb; 41(3):1922-35. PubMed ID: 23258703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of Conformational Equilibria in the S-Adenosylmethionine (SAM) II Riboswitch by SAM, Mg(2+), and Trimethylamine N-Oxide.
    McPhie P; Brown P; Chen B; Dayie TK; Minton AP
    Biochemistry; 2016 Sep; 55(36):5010-20. PubMed ID: 27552169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium ions mediate ligand binding and conformational transition of the SAM/SAH riboswitch.
    Hu G; Zhou HX
    Commun Biol; 2023 Jul; 6(1):791. PubMed ID: 37524918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-Induced Stabilization of a Duplex-like Architecture Is Crucial for the Switching Mechanism of the SAM-III Riboswitch.
    Suresh G; Srinivasan H; Nanda S; Priyakumar UD
    Biochemistry; 2016 Jun; 55(24):3349-60. PubMed ID: 27249101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-molecule FRET reveals the energy landscape of the full-length SAM-I riboswitch.
    Manz C; Kobitski AY; Samanta A; Keller BG; Jäschke A; Nienhaus GU
    Nat Chem Biol; 2017 Nov; 13(11):1172-1178. PubMed ID: 28920931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-ion binding and metal-ion induced folding of the adenine-sensing riboswitch aptamer domain.
    Noeske J; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(15):5262-73. PubMed ID: 17686787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced model captures Mg(2+)-RNA interaction free energy of riboswitches.
    Hayes RL; Noel JK; Whitford PC; Mohanty U; Sanbonmatsu KY; Onuchic JN
    Biophys J; 2014 Apr; 106(7):1508-19. PubMed ID: 24703312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of SAM-II riboswitch explored by replica-exchange molecular dynamics simulation.
    Xue X; Yongjun W; Zhihong L
    J Theor Biol; 2015 Jan; 365():265-9. PubMed ID: 25451761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnesium Ion-Driven Folding and Conformational Switching Kinetics of Tetracycline Binding Aptamer: Implications for in vivo Riboswitch Engineering.
    Kaiser C; Vogel M; Appel B; Weigand J; Müller S; Suess B; Wachtveitl J
    J Mol Biol; 2023 Oct; 435(20):168253. PubMed ID: 37640152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium controls aptamer-expression platform switching in the SAM-I riboswitch.
    Roy S; Hennelly SP; Lammert H; Onuchic JN; Sanbonmatsu KY
    Nucleic Acids Res; 2019 Apr; 47(6):3158-3170. PubMed ID: 30605518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking folding dynamics and function of SAM/SAH riboswitches at the single molecule level.
    Liao TW; Huang L; Wilson TJ; Ganser LR; Lilley DMJ; Ha T
    Nucleic Acids Res; 2023 Sep; 51(17):8957-8969. PubMed ID: 37522343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch.
    Hayes RL; Noel JK; Mohanty U; Whitford PC; Hennelly SP; Onuchic JN; Sanbonmatsu KY
    J Am Chem Soc; 2012 Jul; 134(29):12043-53. PubMed ID: 22612276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain.
    Buck J; Wacker A; Warkentin E; Wöhnert J; Wirmer-Bartoschek J; Schwalbe H
    Nucleic Acids Res; 2011 Dec; 39(22):9768-78. PubMed ID: 21890900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple conformations of SAM-II riboswitch detected with SAXS and NMR spectroscopy.
    Chen B; Zuo X; Wang YX; Dayie TK
    Nucleic Acids Res; 2012 Apr; 40(7):3117-30. PubMed ID: 22139931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SAM-II Riboswitch Samples at least Two Conformations in Solution in the Absence of Ligand: Implications for Recognition.
    Chen B; LeBlanc R; Dayie TK
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2724-7. PubMed ID: 26800479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding site preorganization and ligand discrimination in the purine riboswitch.
    Sund J; Lind C; Åqvist J
    J Phys Chem B; 2015 Jan; 119(3):773-82. PubMed ID: 25014157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The multi-state energy landscape of the SAM-I riboswitch: A single-molecule Förster resonance energy transfer spectroscopy study.
    Manz C; Kobitski AY; Samanta A; Jäschke A; Nienhaus GU
    J Chem Phys; 2018 Mar; 148(12):123324. PubMed ID: 29604896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.