These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28249039)
1. Repair of critical sized cranial defects with BMP9-transduced calvarial cells delivered in a thermoresponsive scaffold. Dumanian ZP; Tollemar V; Ye J; Lu M; Zhu Y; Liao J; Ameer GA; He TC; Reid RR PLoS One; 2017; 12(3):e0172327. PubMed ID: 28249039 [TBL] [Abstract][Full Text] [Related]
2. A thermoresponsive polydiolcitrate-gelatin scaffold and delivery system mediates effective bone formation from BMP9-transduced mesenchymal stem cells. Ye J; Wang J; Zhu Y; Wei Q; Wang X; Yang J; Tang S; Liu H; Fan J; Zhang F; Farina EM; Mohammed MK; Zou Y; Song D; Liao J; Huang J; Guo D; Lu M; Liu F; Liu J; Li L; Ma C; Hu X; Haydon RC; Lee MJ; Reid RR; Ameer GA; Yang L; He TC Biomed Mater; 2016 Apr; 11(2):025021. PubMed ID: 27097687 [TBL] [Abstract][Full Text] [Related]
3. Bone Morphogenetic Protein-9-Stimulated Adipocyte-Derived Mesenchymal Progenitors Entrapped in a Thermoresponsive Nanocomposite Scaffold Facilitate Cranial Defect Repair. Lee CS; Bishop ES; Dumanian Z; Zhao C; Song D; Zhang F; Zhu Y; Ameer GA; He TC; Reid RR J Craniofac Surg; 2019 Sep; 30(6):1915-1919. PubMed ID: 30896511 [TBL] [Abstract][Full Text] [Related]
4. The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Lin CY; Chang YH; Li KC; Lu CH; Sung LY; Yeh CL; Lin KJ; Huang SF; Yen TC; Hu YC Biomaterials; 2013 Dec; 34(37):9401-12. PubMed ID: 24016854 [TBL] [Abstract][Full Text] [Related]
5. Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo. Schantz JT; Hutmacher DW; Lam CX; Brinkmann M; Wong KM; Lim TC; Chou N; Guldberg RE; Teoh SH Tissue Eng; 2003; 9 Suppl 1():S127-39. PubMed ID: 14511476 [TBL] [Abstract][Full Text] [Related]
6. Acceleration of bone regeneration in bioactive glass/gelatin composite scaffolds seeded with bone marrow-derived mesenchymal stem cells over-expressing bone morphogenetic protein-7. Kargozar S; Hashemian SJ; Soleimani M; Milan PB; Askari M; Khalaj V; Samadikuchaksaraie A; Hamzehlou S; Katebi AR; Latifi N; Mozafari M; Baino F Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():688-698. PubMed ID: 28415516 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study. Semyari H; Rajipour M; Sabetkish S; Sabetkish N; Abbas FM; Kajbafzadeh AM Cell Tissue Bank; 2016 Mar; 17(1):69-83. PubMed ID: 26108195 [TBL] [Abstract][Full Text] [Related]
9. A thermoresponsive, citrate-based macromolecule for bone regenerative engineering. Morochnik S; Zhu Y; Duan C; Cai M; Reid RR; He TC; Koh J; Szleifer I; Ameer GA J Biomed Mater Res A; 2018 Jun; 106(6):1743-1752. PubMed ID: 29396921 [TBL] [Abstract][Full Text] [Related]
10. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration in Ds-Red pig calvarial defect using allogenic transplantation of EGFP-pMSCs - A comparison of host cells and seeding cells in the scaffold. Hsieh MK; Wu CJ; Su XC; Chen YC; Tsai TT; Niu CC; Lai PL; Wu SC PLoS One; 2019; 14(7):e0215499. PubMed ID: 31318872 [TBL] [Abstract][Full Text] [Related]
12. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. Zhao C; Zeng Z; Qazvini NT; Yu X; Zhang R; Yan S; Shu Y; Zhu Y; Duan C; Bishop E; Lei J; Zhang W; Yang C; Wu K; Wu Y; An L; Huang S; Ji X; Gong C; Yuan C; Zhang L; Liu W; Huang B; Feng Y; Zhang B; Dai Z; Shen Y; Wang X; Luo W; Oliveira L; Athiviraham A; Lee MJ; Wolf JM; Ameer GA; Reid RR; He TC; Huang W ACS Biomater Sci Eng; 2018 Aug; 4(8):2943-2955. PubMed ID: 30906855 [TBL] [Abstract][Full Text] [Related]
13. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds. Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995 [TBL] [Abstract][Full Text] [Related]
14. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering. Wang CY; Hong PD; Wang DH; Cherng JH; Chang SJ; Liu CC; Fang TJ; Wang YW Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207764 [TBL] [Abstract][Full Text] [Related]
15. BMP-2-transduced human bone marrow stem cells enhance neo-bone formation in a rat critical-sized femur defect. Müller CW; Hildebrandt K; Gerich T; Krettek C; van Griensven M; Rosado Balmayor E J Tissue Eng Regen Med; 2017 Apr; 11(4):1122-1131. PubMed ID: 25783748 [TBL] [Abstract][Full Text] [Related]
16. Osteogenic differentiation of adipose-derived stem cells and calvarial defect repair using baculovirus-mediated co-expression of BMP-2 and miR-148b. Liao YH; Chang YH; Sung LY; Li KC; Yeh CL; Yen TC; Hwang SM; Lin KJ; Hu YC Biomaterials; 2014 Jun; 35(18):4901-10. PubMed ID: 24674465 [TBL] [Abstract][Full Text] [Related]
17. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
18. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
19. Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat. Johari B; Kadivar M; Lak S; Gholipourmalekabadi M; Urbanska AM; Mozafari M; Ahmadzadehzarajabad M; Azarnezhad A; Afshari S; Zargan J; Kargozar S Int J Artif Organs; 2016 Nov; 39(10):524-533. PubMed ID: 27901555 [TBL] [Abstract][Full Text] [Related]
20. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]