These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28249082)
1. Are Non-Newtonian Effects Important in Hemodynamic Simulations of Patients With Autogenous Fistula? Javid Mahmoudzadeh Akherat SM; Cassel K; Boghosian M; Dhar P; Hammes M J Biomech Eng; 2017 Apr; 139(4):0445041-9. PubMed ID: 28249082 [TBL] [Abstract][Full Text] [Related]
2. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438 [TBL] [Abstract][Full Text] [Related]
3. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
4. Modelling blood flow in coronary arteries: Newtonian or shear-thinning non-Newtonian rheology? De Nisco G; Lodi Rizzini M; Verardi R; Chiastra C; Candreva A; De Ferrari G; D'Ascenzo F; Gallo D; Morbiducci U Comput Methods Programs Biomed; 2023 Dec; 242():107823. PubMed ID: 37757568 [TBL] [Abstract][Full Text] [Related]
5. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study. Fortuny G; Herrero J; Puigjaner D; Olivé C; Marimon F; Garcia-Bennett J; Rodríguez D J Biomech; 2015 Jul; 48(10):2047-53. PubMed ID: 25917201 [TBL] [Abstract][Full Text] [Related]
6. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Newtonian and Non-newtonian Fluid Models in Blood Flow Simulation in Patients With Intracranial Arterial Stenosis. Liu H; Lan L; Abrigo J; Ip HL; Soo Y; Zheng D; Wong KS; Wang D; Shi L; Leung TW; Leng X Front Physiol; 2021; 12():718540. PubMed ID: 34552505 [TBL] [Abstract][Full Text] [Related]
8. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries-Insights From Quasi-Steady State Simulations. Mirza A; Ramaswamy S J Biomech Eng; 2022 Nov; 144(11):. PubMed ID: 35599346 [TBL] [Abstract][Full Text] [Related]
9. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
10. Numerical study of purely viscous non-Newtonian flow in an abdominal aortic aneurysm. Marrero VL; Tichy JA; Sahni O; Jansen KE J Biomech Eng; 2014 Oct; 136(10):101001. PubMed ID: 24769921 [TBL] [Abstract][Full Text] [Related]
11. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
12. Standardized viscosity as a source of error in computational fluid dynamic simulations of cerebral aneurysms. Fillingham P; Belur N; Sweem R; Barbour MC; Marsh LMM; Aliseda A; Levitt MR Med Phys; 2024 Feb; 51(2):1499-1508. PubMed ID: 38150511 [TBL] [Abstract][Full Text] [Related]
13. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs. Hippelheuser JE; Lauric A; Cohen AD; Malek AM J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269 [TBL] [Abstract][Full Text] [Related]
14. Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patient-specific arterial models with in-vivo validation. Abbasian M; Shams M; Valizadeh Z; Moshfegh A; Javadzadegan A; Cheng S Comput Methods Programs Biomed; 2020 Apr; 186():105185. PubMed ID: 31739277 [TBL] [Abstract][Full Text] [Related]
15. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633 [TBL] [Abstract][Full Text] [Related]
16. Hemodynamic analysis of hybrid treatment for thoracoabdominal aortic aneurysm based on Newtonian and non-Newtonian models in a patient-specific model. Wen J; Wang J; Peng L; Yuan D; Zheng T Comput Methods Biomech Biomed Engin; 2023 Feb; 26(2):209-221. PubMed ID: 35414317 [TBL] [Abstract][Full Text] [Related]
17. Patient-Specific Computational Fluid Dynamics in Ruptured Posterior Communicating Aneurysms Using Measured Non-Newtonian Viscosity : A Preliminary Study. Lee UY; Jung J; Kwak HS; Lee DH; Chung GH; Park JS; Koh EJ J Korean Neurosurg Soc; 2019 Mar; 62(2):183-192. PubMed ID: 30840973 [TBL] [Abstract][Full Text] [Related]
18. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow. Box FM; van der Geest RJ; Rutten MC; Reiber JH Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825 [TBL] [Abstract][Full Text] [Related]
19. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
20. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements. Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]