These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
528 related articles for article (PubMed ID: 28249113)
21. Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Peng S; Li Z; Zou L; Liu W; Liu C; McClements DJ J Agric Food Chem; 2018 Feb; 66(6):1488-1497. PubMed ID: 29378117 [TBL] [Abstract][Full Text] [Related]
22. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Wu W; Wu J; Fu Q; Jin C; Guo F; Yan Q; Yang Q; Wu D; Yang Y; Yang G Int J Nanomedicine; 2019; 14():4683-4695. PubMed ID: 31308653 [No Abstract] [Full Text] [Related]
23. Curcumin-loaded galactosylated BSA nanoparticles as targeted drug delivery carriers inhibit hepatocellular carcinoma cell proliferation and migration. Huang Y; Hu L; Huang S; Xu W; Wan J; Wang D; Zheng G; Xia Z Int J Nanomedicine; 2018; 13():8309-8323. PubMed ID: 30584302 [TBL] [Abstract][Full Text] [Related]
24. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Zhao X; Chen Q; Li Y; Tang H; Liu W; Yang X Eur J Pharm Biopharm; 2015 Jun; 93():27-36. PubMed ID: 25770771 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of Intestinal Absorption Mechanism and Pharmacokinetics of Curcumin-Loaded Galactosylated Albumin Nanoparticles. Huang Y; Deng S; Luo X; Liu Y; Xu W; Pan J; Wang M; Xia Z Int J Nanomedicine; 2019; 14():9721-9730. PubMed ID: 31849464 [TBL] [Abstract][Full Text] [Related]
26. Studies related to the potential antigenicity of the Bowman-Birk inhibitor, an anticarcinogenic protease inhibitor isolated from soybeans. Maki PA; Paterson Y; Kennedy AR Nutr Cancer; 1994; 22(2):185-93. PubMed ID: 14502847 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of soybean Bowman-Birk inhibitor from different sources. Gladysheva IP; Balabushevich NG; Moroz NA; Larionova NI Biochemistry (Mosc); 2000 Feb; 65(2):198-203. PubMed ID: 10713547 [TBL] [Abstract][Full Text] [Related]
28. In vivo anti-inflammatory efficacy of the combined Bowman-Birk trypsin inhibitor and genistein isoflavone, two biological compounds from soybean. Sadeghalvad M; Mohammadi-Motlagh HR; Karaji AG; Mostafaie A J Biochem Mol Toxicol; 2019 Dec; 33(12):e22406. PubMed ID: 31593353 [TBL] [Abstract][Full Text] [Related]
29. Isolation of Bowman-Birk-Inhibitor from soybean extracts using novel peptide probes and high gradient magnetic separation. Fields C; Mallee P; Muzard J; Lee GU Food Chem; 2012 Oct; 134(4):1831-8. PubMed ID: 23442627 [TBL] [Abstract][Full Text] [Related]
30. The Bowman-Birk inhibitor. Trypsin- and chymotrypsin-inhibitor from soybeans. Birk Y Int J Pept Protein Res; 1985 Feb; 25(2):113-31. PubMed ID: 3886572 [TBL] [Abstract][Full Text] [Related]
31. Encapsulation of curcumin in soluble soybean polysaccharide-coated gliadin nanoparticles: interaction, stability, antioxidant capacity, and bioaccessibility. Guo S; Zhao Y; Luo S; Mu D; Li X; Zhong X; Jiang S; Zheng Z J Sci Food Agric; 2022 Sep; 102(12):5121-5131. PubMed ID: 35275410 [TBL] [Abstract][Full Text] [Related]
32. Disposition of positively charged Bowman-Birk protease inhibitor conjugates in mice: influence of protein conjugate charge density and size on lung targeting. Ekrami H; Kennedy AR; Shen WC J Pharm Sci; 1995 Apr; 84(4):456-61. PubMed ID: 7629736 [TBL] [Abstract][Full Text] [Related]
33. Detection of Bowman-Birk inhibitor and anti-Bowman-Birk inhibitor antibodies in sera of humans and animals treated with Bowman-Birk inhibitor concentrate. Wan XS; Serota DG; Ware JH; Crowell JA; Kennedy AR Nutr Cancer; 2002; 43(2):167-73. PubMed ID: 12588697 [TBL] [Abstract][Full Text] [Related]
34. Novel alleles among soybean Bowman-Birk proteinase inhibitor gene families. Wang Y; Chen X; Qiu L Sci China C Life Sci; 2008 Aug; 51(8):687-92. PubMed ID: 18677596 [TBL] [Abstract][Full Text] [Related]
35. Lipopolysaccharide based oral nanocarriers for the improvement of bioavailability and anticancer efficacy of curcumin. Chaurasia S; Patel RR; Chaubey P; Kumar N; Khan G; Mishra B Carbohydr Polym; 2015 Oct; 130():9-17. PubMed ID: 26076595 [TBL] [Abstract][Full Text] [Related]
36. Skin-penetrating polymeric nanoparticles incorporated in silk fibroin hydrogel for topical delivery of curcumin to improve its therapeutic effect on psoriasis mouse model. Mao KL; Fan ZL; Yuan JD; Chen PP; Yang JJ; Xu J; ZhuGe DL; Jin BH; Zhu QY; Shen BX; Sohawon Y; Zhao YZ; Xu HL Colloids Surf B Biointerfaces; 2017 Dec; 160():704-714. PubMed ID: 29035818 [TBL] [Abstract][Full Text] [Related]
37. Simultaneous and rapid determination of the anticarcinogenic proteins Bowman-Birk inhibitor and lectin in soybean crops by perfusion RP-HPLC. Anta L; Luisa Marina M; GarcĂa MC J Chromatogr A; 2010 Nov; 1217(45):7138-43. PubMed ID: 20889157 [TBL] [Abstract][Full Text] [Related]
38. Acylation of Bowman-Birk soybean proteinase inhibitor by unsaturated fatty acid derivatives. Malykh EV; Tiourina OP; Larionova NI Biochemistry (Mosc); 2001 Apr; 66(4):444-8. PubMed ID: 11403653 [TBL] [Abstract][Full Text] [Related]
39. Inhibition of matrix metalloproteinase-1 activity by the soybean Bowman-Birk inhibitor. Losso JN; Munene CN; Bansode RR; Bawadi HA Biotechnol Lett; 2004 Jun; 26(11):901-5. PubMed ID: 15269538 [TBL] [Abstract][Full Text] [Related]
40. Maintained particulate integrity of soy protein nanoparticles during gastrointestinal digestion via genipin crosslinking enhancing stability and bioavailability of curcumin. Yuan D; Qin L; Niu Z; Zhou F; Zhao M Int J Biol Macromol; 2024 Aug; 274(Pt 2):133213. PubMed ID: 38889834 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]