These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Rardin MJ; Newman JC; Held JM; Cusack MP; Sorensen DJ; Li B; Schilling B; Mooney SD; Kahn CR; Verdin E; Gibson BW Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6601-6. PubMed ID: 23576753 [TBL] [Abstract][Full Text] [Related]
5. O-acetylation and de-O-acetylation of sialic acids. O-acetylation of sialic acids in the rat liver Golgi apparatus involves an acetyl intermediate and essential histidine and lysine residues--a transmembrane reaction? Higa HH; Butor C; Diaz S; Varki A J Biol Chem; 1989 Nov; 264(32):19427-34. PubMed ID: 2509477 [TBL] [Abstract][Full Text] [Related]
6. The mitochondrial lysine acetylome of Arabidopsis. König AC; Hartl M; Boersema PJ; Mann M; Finkemeier I Mitochondrion; 2014 Nov; 19 Pt B():252-60. PubMed ID: 24727099 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: chemical and metabolic logic of acetyl-lysine modifications. Ghanta S; Grossmann RE; Brenner C Crit Rev Biochem Mol Biol; 2013; 48(6):561-74. PubMed ID: 24050258 [TBL] [Abstract][Full Text] [Related]
8. Lysine acetylation in mitochondria: From inventory to function. Hosp F; Lassowskat I; Santoro V; De Vleesschauwer D; Fliegner D; Redestig H; Mann M; Christian S; Hannah MA; Finkemeier I Mitochondrion; 2017 Mar; 33():58-71. PubMed ID: 27476757 [TBL] [Abstract][Full Text] [Related]
9. Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3. Sol EM; Wagner SA; Weinert BT; Kumar A; Kim HS; Deng CX; Choudhary C PLoS One; 2012; 7(12):e50545. PubMed ID: 23236377 [TBL] [Abstract][Full Text] [Related]
10. Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria? Santo-Domingo J; Dayon L; Wiederkehr A J Mol Biol; 2020 Mar; 432(5):1446-1460. PubMed ID: 31628953 [TBL] [Abstract][Full Text] [Related]
11. The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging. Sack MN J Mol Cell Cardiol; 2012 Mar; 52(3):520-5. PubMed ID: 22119802 [TBL] [Abstract][Full Text] [Related]
12. Proximal Cysteines that Enhance Lysine N-Acetylation of Cytosolic Proteins in Mice Are Less Conserved in Longer-Living Species. James AM; Smith AC; Smith CL; Robinson AJ; Murphy MP Cell Rep; 2018 Aug; 24(6):1445-1455. PubMed ID: 30089256 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria Lysine Acetylation and Phenotypic Control. Ciregia F Adv Exp Med Biol; 2019; 1158():59-70. PubMed ID: 31452135 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of the functional interaction between fatty acid synthetase and thioesterase II by modification of a single cysteine thiol on the thioesterase. Witkowski A; Smith S Arch Biochem Biophys; 1985 Dec; 243(2):420-6. PubMed ID: 4083894 [TBL] [Abstract][Full Text] [Related]
15. Regulatory role of acetylation on enzyme activity and fluxes of energy metabolism pathways. Moreno-Sánchez R; Gallardo-Pérez JC; Pacheco-Velazquez SC; Robledo-Cadena DX; Rodríguez-Enríquez S; Encalada R; Saavedra E; Marín-Hernández Á Biochim Biophys Acta Gen Subj; 2021 Dec; 1865(12):130021. PubMed ID: 34597724 [TBL] [Abstract][Full Text] [Related]
16. Adenosine triphosphate can act as a determinant of lysine acetylation of non-native and native substrates. Zhou JP; Tan YQ; Chen ZH; Zhao W; Liu T Microbiol Res; 2023 Mar; 268():127296. PubMed ID: 36580869 [TBL] [Abstract][Full Text] [Related]
17. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Schwer B; Bunkenborg J; Verdin RO; Andersen JS; Verdin E Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10224-10229. PubMed ID: 16788062 [TBL] [Abstract][Full Text] [Related]