BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 28249360)

  • 1. Heart function and hemodynamic analysis for zebrafish embryos.
    Yalcin HC; Amindari A; Butcher JT; Althani A; Yacoub M
    Dev Dyn; 2017 Nov; 246(11):868-880. PubMed ID: 28249360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling.
    Salman HE; Yalcin HC
    Micron; 2020 Mar; 130():102801. PubMed ID: 31864139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live imaging and modeling for shear stress quantification in the embryonic zebrafish heart.
    Boselli F; Vermot J
    Methods; 2016 Feb; 94():129-34. PubMed ID: 26390811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of early embryonic great-vessel microcirculation in zebrafish using high-speed confocal μPIV.
    Chen CY; Patrick MJ; Corti P; Kowalski W; Roman BL; Pekkan K
    Biorheology; 2011; 48(5):305-21. PubMed ID: 22433571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic Studies for Analyzing the Teratogenic Effects of Drugs in the Zebrafish Embryo.
    Yalcin HC
    Methods Mol Biol; 2018; 1797():487-495. PubMed ID: 29896711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae.
    Malone MH; Sciaky N; Stalheim L; Hahn KM; Linney E; Johnson GL
    BMC Biotechnol; 2007 Jul; 7():40. PubMed ID: 17623073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous imaging of blood flow dynamics and vascular remodelling during development.
    Ghaffari S; Leask RL; Jones EA
    Development; 2015 Dec; 142(23):4158-67. PubMed ID: 26443647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo.
    Brönnimann D; Djukic T; Triet R; Dellenbach C; Saveljic I; Rieger M; Rohr S; Filipovic N; Djonov V
    PLoS One; 2016; 11(3):e0150948. PubMed ID: 26967155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo wall shear measurements within the developing zebrafish heart.
    Jamison RA; Samarage CR; Bryson-Richardson RJ; Fouras A
    PLoS One; 2013; 8(10):e75722. PubMed ID: 24124507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac-phase filtering in intracardiac particle image velocimetry.
    Jamison RA; Fouras A; Bryson-Richardson RJ
    J Biomed Opt; 2012 Mar; 17(3):036007. PubMed ID: 22502565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D modelling of fluid mechanics in the zebrafish embryonic heart.
    Foo YY; Pant S; Tay HS; Imangali N; Chen N; Winkler C; Yap CH
    Biomech Model Mechanobiol; 2020 Feb; 19(1):221-232. PubMed ID: 31446522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light-sheet Fluorescence Microscopy to Capture 4-Dimensional Images of the Effects of Modulating Shear Stress on the Developing Zebrafish Heart.
    Messerschmidt V; Bailey Z; Baek KI; Bryant R; Li R; Hsiai TK; Lee J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valveless pumping mechanics of the embryonic heart during cardiac looping: Pressure and flow through micro-PIV.
    Bark DL; Johnson B; Garrity D; Dasi LP
    J Biomech; 2017 Jan; 50():50-55. PubMed ID: 27887729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Visualization of Developmental Toxicity of 2,4,6-Trinitrotoluene in Zebrafish Embryogenesis Using Light-Sheet Microscopy.
    Eum J; Kwak J; Kim HJ; Ki S; Lee K; Raslan AA; Park OK; Chowdhury MA; Her S; Kee Y; Kwon SH; Hwang BJ
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27869673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hemodynamic flow visualization of early embryonic great vessels using μPIV.
    Goktas S; Chen CY; Kowalski WJ; Pekkan K
    Methods Mol Biol; 2015; 1189():17-30. PubMed ID: 25245684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease.
    Salman HE; Yalcin HC
    J Cardiovasc Dev Dis; 2021 Jan; 8(2):. PubMed ID: 33572675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning enables automated volumetric assessments of cardiac function in zebrafish.
    Akerberg AA; Burns CE; Burns CG; Nguyen C
    Dis Model Mech; 2019 Oct; 12(10):. PubMed ID: 31548281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling.
    Vedula V; Lee J; Xu H; Kuo CJ; Hsiai TK; Marsden AL
    PLoS Comput Biol; 2017 Oct; 13(10):e1005828. PubMed ID: 29084212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic shear stress patterns predict the orientation of convergent tissue movements in the embryonic heart.
    Boselli F; Steed E; Freund JB; Vermot J
    Development; 2017 Dec; 144(23):4322-4327. PubMed ID: 29183943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.