BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28249360)

  • 41. The embryonic vertebrate heart tube is a dynamic suction pump.
    Forouhar AS; Liebling M; Hickerson A; Nasiraei-Moghaddam A; Tsai HJ; Hove JR; Fraser SE; Dickinson ME; Gharib M
    Science; 2006 May; 312(5774):751-3. PubMed ID: 16675702
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Valveless pumping behavior of the simulated embryonic heart tube as a function of contractile patterns and myocardial stiffness.
    Sharifi A; Gendernalik A; Garrity D; Bark D
    Biomech Model Mechanobiol; 2021 Oct; 20(5):2001-2012. PubMed ID: 34297252
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organ Function as a Modulator of Organ Formation: Lessons from Zebrafish.
    Collins MM; Stainier DY
    Curr Top Dev Biol; 2016; 117():417-33. PubMed ID: 26969993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduced embryonic blood flow impacts extracellular matrix deposition in the maturing aorta.
    Espinosa MG; Taber LA; Wagenseil JE
    Dev Dyn; 2018 Jul; 247(7):914-923. PubMed ID: 29696727
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cardio-respiratory control during early development in the model animal zebrafish.
    Schwerte T
    Acta Histochem; 2009; 111(3):230-43. PubMed ID: 19121852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Trout Ea4- or human Eb-peptide of pro-IGF-I disrupts heart, red blood cell, and vasculature development in zebrafish embryos.
    Chun CZ; Tsai HJ; Chen TT
    Mol Reprod Dev; 2006 Sep; 73(9):1112-21. PubMed ID: 16807888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model.
    Groenendijk BC; Van der Heiden K; Hierck BP; Poelmann RE
    Physiology (Bethesda); 2007 Dec; 22():380-9. PubMed ID: 18073411
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-resolution cardiovascular function confirms functional orthology of myocardial contractility pathways in zebrafish.
    Shin JT; Pomerantsev EV; Mably JD; MacRae CA
    Physiol Genomics; 2010 Jul; 42(2):300-9. PubMed ID: 20388839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical vessel injury in zebrafish embryos.
    Clay H; Coughlin SR
    J Vis Exp; 2015 Feb; (96):e52460. PubMed ID: 25742284
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The lim domain only protein 7 is important in zebrafish heart development.
    Ott EB; van den Akker NM; Sakalis PA; Gittenberger-de Groot AC; Te Velthuis AJ; Bagowski CP
    Dev Dyn; 2008 Dec; 237(12):3940-52. PubMed ID: 19035355
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Homocysteine exposure affects early hemodynamic parameters of embryonic chicken heart function.
    Oosterbaan AM; Bon E; Steegers-Theunissen RP; Van Der Steen AF; Ursem NT
    Anat Rec (Hoboken); 2012 Jun; 295(6):961-7. PubMed ID: 22528512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Patient-specific hemodynamic analysis of small internal carotid artery-ophthalmic artery aneurysms.
    Chien A; Tateshima S; Sayre J; Castro M; Cebral J; ViƱuela F
    Surg Neurol; 2009 Nov; 72(5):444-50; discussion 450. PubMed ID: 19329152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microinjecting recombinant rainbow trout Ea4-peptide of pro-IGF-I into zebrafish embryos causes abnormal development in heart, red blood cells, and vasculature.
    Chun CZ; Chen TT
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Feb; 145(1):39-44. PubMed ID: 16914384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart.
    Matrone G; Wilson KS; Mullins JJ; Tucker CS; Denvir MA
    Differentiation; 2015 Jun; 89(5):117-27. PubMed ID: 26095446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos.
    Midgett M; Chivukula VK; Dorn C; Wallace S; Rugonyi S
    J R Soc Interface; 2015 Oct; 12(111):20150652. PubMed ID: 26468069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication.
    Hamm EE; Voth DE; Ballard JD
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):14176-81. PubMed ID: 16966605
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Angiogenic network formation in the developing vertebrate trunk.
    Isogai S; Lawson ND; Torrealday S; Horiguchi M; Weinstein BM
    Development; 2003 Nov; 130(21):5281-90. PubMed ID: 12954720
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluid-Structure Interaction Modeling of the Aortic Hemodynamics in Adult Zebrafish: A Pilot Study Based on Synchrotron X-Ray Tomography.
    Van Impe M; Caboor L; Deleeuw V; Olbinado M; De Backer J; Sips P; Segers P
    IEEE Trans Biomed Eng; 2023 Jul; 70(7):2101-2110. PubMed ID: 37018723
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fluid shear stress controls cardiovascular development. A functionomic approach.
    Hierck BP; van der Heiden K; DeRuiter MC; Gittenberger-de Groot AC; Poelmann RE
    Wien Klin Wochenschr; 2007; 119(11-12 Suppl 1):10-3. PubMed ID: 19618590
    [No Abstract]   [Full Text] [Related]  

  • 60. Effect of heart rate on the hemodynamics of bileaflet mechanical heart valves' prostheses (St. Jude Medical) in the aortic position and in the opening phase: A computational study.
    Jahandardoost M; Fradet G; Mohammadi H
    Proc Inst Mech Eng H; 2016 Mar; 230(3):175-90. PubMed ID: 26786673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.