BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28249393)

  • 1. Modeling complexity in engineered infrastructure system: Water distribution network as an example.
    Zeng F; Li X; Li K
    Chaos; 2017 Feb; 27(2):023105. PubMed ID: 28249393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A complex network based model for detecting isolated communities in water distribution networks.
    Sheng N; Jia Y; Xu Z; Ho SL; Kan CW
    Chaos; 2013 Dec; 23(4):043102. PubMed ID: 24387541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Many-objective optimization model for the flexible design of water distribution networks.
    Marques J; Cunha M; Savić D
    J Environ Manage; 2018 Nov; 226():308-319. PubMed ID: 30125810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability analysis of water distribution networks to accidental pipe burst.
    Wéber R; Huzsvár T; Hős C
    Water Res; 2020 Oct; 184():116178. PubMed ID: 32707306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Approach to Demand Pattern Estimation: Monte Carlo Simulation and Fractal Analysis.
    Mohapatra S; Sargaonkar A
    J Environ Sci Eng; 2014 Jan; 56(1):65-72. PubMed ID: 26445758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic patterns in the evolution of urban water networks: Evidence from a large Asian city.
    Krueger E; Klinkhamer C; Urich C; Zhan X; Rao PSC
    Phys Rev E; 2017 Mar; 95(3-1):032312. PubMed ID: 28415303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
    Rathi S; Gupta R
    J Environ Sci Eng; 2014 Apr; 56(2):169-78. PubMed ID: 26563063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of coupled system dynamics and game theory: A dynamic water conflict resolution method.
    Zomorodian M; Lai SH; Homayounfar M; Ibrahim S; Pender G
    PLoS One; 2017; 12(12):e0188489. PubMed ID: 29216200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply.
    Zischg J; Rauch W; Sitzenfrei R
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of topological, empirical and optimization-based approaches for locating quality detection points in water distribution networks.
    Santonastaso GF; Di Nardo A; Creaco E; Musmarra D; Greco R
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33844-33853. PubMed ID: 32851529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiobjective evolutionary optimization of water distribution systems: Exploiting diversity with infeasible solutions.
    Tanyimboh TT; Seyoum AG
    J Environ Manage; 2016 Dec; 183():133-141. PubMed ID: 27589918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real time control of water distribution networks: A state-of-the-art review.
    Creaco E; Campisano A; Fontana N; Marini G; Page PR; Walski T
    Water Res; 2019 Sep; 161():517-530. PubMed ID: 31229732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flexible Reconfiguration of Existing Urban Water Infrastructure Systems.
    Perelman LS; Allen M; Preis A; Iqbal M; Whittle AJ
    Environ Sci Technol; 2015 Nov; 49(22):13378-84. PubMed ID: 26465822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increasing the capacity of water distribution networks using fitness function transformation.
    Huzsvár T; Wéber R; Déllei Á; Hős C
    Water Res; 2021 Aug; 201():117362. PubMed ID: 34174728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.