These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28249450)

  • 21. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I
    Muhammad Z; Liu P; Ahmad R; Jalali Asadabadi S; Franchini C; Ahmad I
    Phys Chem Chem Phys; 2020 Jun; 22(21):11943-11955. PubMed ID: 32412023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitons in Time-Dependent Density-Functional Theory.
    Ullrich CA; Yang ZH
    Top Curr Chem; 2016; 368():185-217. PubMed ID: 25805143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical spectrum of MoS2: many-body effects and diversity of exciton states.
    Qiu DY; da Jornada FH; Louie SG
    Phys Rev Lett; 2013 Nov; 111(21):216805. PubMed ID: 24313514
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Huge excitonic effects in layered hexagonal boron nitride.
    Arnaud B; Lebègue S; Rabiller P; Alouani M
    Phys Rev Lett; 2006 Jan; 96(2):026402. PubMed ID: 16486604
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Excitons and optical properties of alpha-quartz.
    Chang EK; Rohlfing M; Louie SG
    Phys Rev Lett; 2000 Sep; 85(12):2613-6. PubMed ID: 10978120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Many-body effects and excitonic features in 2D biphenylene carbon.
    Lüder J; Puglia C; Ottosson H; Eriksson O; Sanyal B; Brena B
    J Chem Phys; 2016 Jan; 144(2):024702. PubMed ID: 26772582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical Absorption Spectra Calculated from a First-Principles Wave Function Theory for Solids: Transcorrelated Method Combined with Configuration Interaction Singles.
    Ochi M; Tsuneyuki S
    J Chem Theory Comput; 2014 Sep; 10(9):4098-103. PubMed ID: 26588551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Communication: generalization of Koopmans' theorem to optical transitions in the Hubbard model of graphene nanodots.
    Sheng W; Luo K; Zhou A
    J Chem Phys; 2015 Jan; 142(2):021102. PubMed ID: 25591331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scaling of excitons in carbon nanotubes.
    Perebeinos V; Tersoff J; Avouris P
    Phys Rev Lett; 2004 Jun; 92(25 Pt 1):257402. PubMed ID: 15245063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ab initio calculation of optical spectra of liquids: many-body effects in the electronic excitations of water.
    Garbuio V; Cascella M; Reining L; Sole RD; Pulci O
    Phys Rev Lett; 2006 Sep; 97(13):137402. PubMed ID: 17026073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical excitonic effects in metals and semiconductors.
    Marini A; Del Sole R
    Phys Rev Lett; 2003 Oct; 91(17):176402. PubMed ID: 14611364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of electron-hole correlations in 3D polymer materials.
    Puschnig P; Ambrosch-Draxl C
    Phys Rev Lett; 2002 Jul; 89(5):056405. PubMed ID: 12144457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dark excitons and tunable optical gap in graphene nanodots.
    Zhang Y; Sheng W; Li Y
    Phys Chem Chem Phys; 2017 Aug; 19(34):23131-23137. PubMed ID: 28820198
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Excitonic effects on the optical response of graphene and bilayer graphene.
    Yang L; Deslippe J; Park CH; Cohen ML; Louie SG
    Phys Rev Lett; 2009 Oct; 103(18):186802. PubMed ID: 19905823
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled dynamic screening of excitonic complexes in 2D semiconductors.
    Klots AR; Weintrub B; Prasai D; Kidd D; Varga K; Velizhanin KA; Bolotin KI
    Sci Rep; 2018 Jan; 8(1):768. PubMed ID: 29335642
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parameter-free calculation of response functions in time-dependent density-functional theory.
    Sottile F; Olevano V; Reining L
    Phys Rev Lett; 2003 Aug; 91(5):056402. PubMed ID: 12906612
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling the Exciton Binding Energy and the Dielectric Constant in Single-Crystal Methylammonium Lead Triiodide Perovskite.
    Yang Z; Surrente A; Galkowski K; Bruyant N; Maude DK; Haghighirad AA; Snaith HJ; Plochocka P; Nicholas RJ
    J Phys Chem Lett; 2017 Apr; 8(8):1851-1855. PubMed ID: 28393517
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.
    Umari P; Mosconi E; De Angelis F
    J Phys Chem Lett; 2018 Feb; 9(3):620-627. PubMed ID: 29336156
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-edge structures from first principles all-electron Bethe-Salpeter equation calculations.
    Olovsson W; Tanaka I; Puschnig P; Ambrosch-Draxl C
    J Phys Condens Matter; 2009 Mar; 21(10):104205. PubMed ID: 21817425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong charge-transfer excitonic effects and the Bose-Einstein exciton condensate in graphane.
    Cudazzo P; Attaccalite C; Tokatly IV; Rubio A
    Phys Rev Lett; 2010 Jun; 104(22):226804. PubMed ID: 20867194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.