BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28249454)

  • 1. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach.
    Plötz PA; Megow J; Niehaus T; Kühn O
    J Chem Phys; 2017 Feb; 146(8):084112. PubMed ID: 28249454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-DFTB Approach to the Parametrization of the System-Bath Hamiltonian Describing Exciton-Vibrational Dynamics of Molecular Assemblies.
    Plötz PA; Megow J; Niehaus T; Kühn O
    J Chem Theory Comput; 2018 Oct; 14(10):5001-5010. PubMed ID: 30141929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new efficient method for calculation of Frenkel exciton parameters in molecular aggregates.
    Plötz PA; Niehaus T; Kühn O
    J Chem Phys; 2014 May; 140(17):174101. PubMed ID: 24811619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Davydov-type excitonic effects on the absorption spectra of parallel-stacked and herringbone aggregates of pentacene: Time-dependent density-functional theory and time-dependent density-functional tight binding.
    Darghouth AAMHM; Correa GC; Juillard S; Casida ME; Humeniuk A; Mitrić R
    J Chem Phys; 2018 Oct; 149(13):134111. PubMed ID: 30292200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum chemical parametrization and spectroscopic characterization of the Frenkel exciton Hamiltonian for a J-aggregate forming perylene bisimide dye.
    Ambrosek D; Köhn A; Schulze J; Kühn O
    J Phys Chem A; 2012 Nov; 116(46):11451-8. PubMed ID: 22946964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFTB/MM Molecular Dynamics Simulations of the FMO Light-Harvesting Complex.
    Maity S; Bold BM; Prajapati JD; Sokolov M; Kubař T; Elstner M; Kleinekathöfer U
    J Phys Chem Lett; 2020 Oct; 11(20):8660-8667. PubMed ID: 32991176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range correction for tight-binding TD-DFT.
    Humeniuk A; Mitrić R
    J Chem Phys; 2015 Oct; 143(13):134120. PubMed ID: 26450305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of exciton couplings based on density functional tight-binding coupled to state-interaction state-averaged ensemble-referenced Kohn-Sham approach.
    Kim TI; Lee IS; Kim H; Min SK
    J Chem Phys; 2023 Jan; 158(4):044106. PubMed ID: 36725518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond exciton theory: a time-dependent DFT and Franck-Condon study of perylene diimide and its chromophoric dimer.
    Clark AE; Qin C; Li AD
    J Am Chem Soc; 2007 Jun; 129(24):7586-95. PubMed ID: 17518466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping.
    Stojanović L; Aziz SG; Hilal RH; Plasser F; Niehaus TA; Barbatti M
    J Chem Theory Comput; 2017 Dec; 13(12):5846-5860. PubMed ID: 29140693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore-Dependent Intramolecular Exciton-Vibrational Coupling in the FMO Complex: Quantification and Importance for Exciton Dynamics.
    Padula D; Lee MH; Claridge K; Troisi A
    J Phys Chem B; 2017 Nov; 121(43):10026-10035. PubMed ID: 28990788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of Singlet Exciton Diffusion in Bulk Organic Materials.
    Kranz JJ; Elstner M
    J Chem Theory Comput; 2016 Sep; 12(9):4209-21. PubMed ID: 27434173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical investigation of non-Förster exciton transfer mechanisms in perylene diimide donor, phenylene bridge, and terrylene diimide acceptor systems.
    Yang L; Jang SJ
    J Chem Phys; 2020 Oct; 153(14):144305. PubMed ID: 33086841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Electronic Fluctuations and Their Description on the Exciton Dynamics in the Light-Harvesting Complex PE545.
    Aghtar M; Kleinekathöfer U; Curutchet C; Mennucci B
    J Phys Chem B; 2017 Feb; 121(6):1330-1339. PubMed ID: 28112938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Dependent Density Functional Tight Binding: New Formulation and Benchmark of Excited States.
    Trani F; Scalmani G; Zheng G; Carnimeo I; Frisch MJ; Barone V
    J Chem Theory Comput; 2011 Oct; 7(10):3304-13. PubMed ID: 26598164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computing dispersive, polarizable, and electrostatic shifts of excitation energy in supramolecular systems: PTCDI crystal.
    Megow J
    J Chem Phys; 2016 Sep; 145(9):094109. PubMed ID: 27608991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: a case study of dithia-anthracenophane.
    Yang L; Caprasecca S; Mennucci B; Jang S
    J Am Chem Soc; 2010 Dec; 132(47):16911-21. PubMed ID: 21050006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning Frenkel Hamiltonian parameters to accelerate simulations of exciton dynamics.
    Farahvash A; Lee CK; Sun Q; Shi L; Willard AP
    J Chem Phys; 2020 Aug; 153(7):074111. PubMed ID: 32828098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tight-binding approximations to time-dependent density functional theory - A fast approach for the calculation of electronically excited states.
    Rüger R; van Lenthe E; Heine T; Visscher L
    J Chem Phys; 2016 May; 144(18):184103. PubMed ID: 27179467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of TD-DFT- and TD-HF-based approaches for the prediction of exciton coupling parameters, potential energy curves, and electronic characters of electronically excited aggregates.
    Liu W; Settels V; Harbach PH; Dreuw A; Fink RF; Engels B
    J Comput Chem; 2011 Jul; 32(9):1971-81. PubMed ID: 21484836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.