BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28249564)

  • 1. Combining phylogenetic footprinting with motif models incorporating intra-motif dependencies.
    Nettling M; Treutler H; Cerquides J; Grosse I
    BMC Bioinformatics; 2017 Mar; 18(1):141. PubMed ID: 28249564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring intra-motif dependencies of DNA binding sites from ChIP-seq data.
    Eggeling R; Roos T; Myllymäki P; Grosse I
    BMC Bioinformatics; 2015 Nov; 16():375. PubMed ID: 26552868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting and correcting the binding-affinity bias in ChIP-seq data using inter-species information.
    Nettling M; Treutler H; Cerquides J; Grosse I
    BMC Genomics; 2016 May; 17():347. PubMed ID: 27165633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the detection and refinement of transcription factor binding sites using ChIP-Seq data.
    Hu M; Yu J; Taylor JM; Chinnaiyan AM; Qin ZS
    Nucleic Acids Res; 2010 Apr; 38(7):2154-67. PubMed ID: 20056654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny.
    Siddharthan R; Siggia ED; van Nimwegen E
    PLoS Comput Biol; 2005 Dec; 1(7):e67. PubMed ID: 16477324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. InMoDe: tools for learning and visualizing intra-motif dependencies of DNA binding sites.
    Eggeling R; Grosse I; Grau J
    Bioinformatics; 2017 Feb; 33(4):580-582. PubMed ID: 28035026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disentangling transcription factor binding site complexity.
    Eggeling R
    Nucleic Acids Res; 2018 Nov; 46(20):e121. PubMed ID: 30085218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated incorporation of pairwise dependency in transcription factor binding site prediction using dinucleotide weight tensors.
    Omidi S; Zavolan M; Pachkov M; Breda J; Berger S; van Nimwegen E
    PLoS Comput Biol; 2017 Jul; 13(7):e1005176. PubMed ID: 28753602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of transcription factor binding sites using ChIP-chip and phylogenetic footprinting data.
    Friberg MT
    J Bioinform Comput Biol; 2007 Feb; 5(1):105-16. PubMed ID: 17477493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the value of intra-motif dependencies of human insulator protein CTCF.
    Eggeling R; Gohr A; Keilwagen J; Mohr M; Posch S; Smith AD; Grosse I
    PLoS One; 2014; 9(1):e85629. PubMed ID: 24465627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering uncharacterized binding of transcription factors from ATAC-seq footprinting data.
    Schultheis H; Bentsen M; Heger V; Looso M
    Sci Rep; 2024 Apr; 14(1):9275. PubMed ID: 38654130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Informative priors based on transcription factor structural class improve de novo motif discovery.
    Narlikar L; Gordân R; Ohler U; Hartemink AJ
    Bioinformatics; 2006 Jul; 22(14):e384-92. PubMed ID: 16873497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Argo_CUDA: Exhaustive GPU based approach for motif discovery in large DNA datasets.
    Vishnevsky OV; Bocharnikov AV; Kolchanov NA
    J Bioinform Comput Biol; 2018 Feb; 16(1):1740012. PubMed ID: 29281953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.
    Liu B; Zhang H; Zhou C; Li G; Fennell A; Wang G; Kang Y; Liu Q; Ma Q
    BMC Genomics; 2016 Aug; 17():578. PubMed ID: 27507169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A survey of DNA motif finding algorithms.
    Das MK; Dai HK
    BMC Bioinformatics; 2007 Nov; 8 Suppl 7(Suppl 7):S21. PubMed ID: 18047721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general approach for discriminative de novo motif discovery from high-throughput data.
    Grau J; Posch S; Grosse I; Keilwagen J
    Nucleic Acids Res; 2013 Nov; 41(21):e197. PubMed ID: 24057214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unrealistic phylogenetic trees may improve phylogenetic footprinting.
    Nettling M; Treutler H; Cerquides J; Grosse I
    Bioinformatics; 2017 Jun; 33(11):1639-1646. PubMed ID: 28130227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Whole genome human/mouse phylogenetic footprinting of potential transcription regulatory signals.
    Cheremushkin E; Kel A
    Pac Symp Biocomput; 2003; ():291-302. PubMed ID: 12603036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CONREAL: conserved regulatory elements anchored alignment algorithm for identification of transcription factor binding sites by phylogenetic footprinting.
    Berezikov E; Guryev V; Plasterk RH; Cuppen E
    Genome Res; 2004 Jan; 14(1):170-8. PubMed ID: 14672977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.