BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2824958)

  • 21. Baroreflex-mediated bradycardia is blunted by intravenous mu- but not kappa-opioid agonists.
    Omoniyi AT; Wu D; Soong Y; Szeto HH
    J Cardiovasc Pharmacol; 1998 Jun; 31(6):954-9. PubMed ID: 9641482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Central effects of mu, delta, and kappa receptor agonists in hemorrhagic shock.
    Feuerstein G; Powell E; Faden AI
    Peptides; 1985; 6 Suppl 1():11-3. PubMed ID: 2995939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immunomodulatory activity of mu- and kappa-selective opioid agonists.
    Taub DD; Eisenstein TK; Geller EB; Adler MW; Rogers TJ
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):360-4. PubMed ID: 1846441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Opioid receptor subtypes in the supraoptic nucleus and posterior pituitary gland of morphine-tolerant rats.
    Sumner BE; Coombes JE; Pumford KM; Russell JA
    Neuroscience; 1990; 37(3):635-45. PubMed ID: 2174133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Medial thalamic injection of opioid agonists: mu-agonist increases while kappa-agonist decreases stimulus thresholds for pain and reward.
    Carr KD; Bak TH
    Brain Res; 1988 Feb; 441(1-2):173-84. PubMed ID: 2833999
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The kappa opioid agonist U-50,488H antagonizes respiratory effects of mu opioid receptor agonists in conscious rats.
    Dosaka-Akita K; Tortella FC; Holaday JW; Long JB
    J Pharmacol Exp Ther; 1993 Feb; 264(2):631-7. PubMed ID: 8382278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antinociception produced by receptor selective opioids: modulation of spinal antinociceptive effects by supraspinal opioids.
    Miaskowski C; Levine JD
    Brain Res; 1992 Nov; 595(1):32-8. PubMed ID: 1334770
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplicative interaction between intrathecally and intracerebroventricularly administered mu opioid agonists but limited interactions between delta and kappa agonists for antinociception in mice.
    Roerig SC; Fujimoto JM
    J Pharmacol Exp Ther; 1989 Jun; 249(3):762-8. PubMed ID: 2567350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kappa opioid partial agonist activity of the enkephalin-like pentapeptide BW942C based on urination and in vitro studies in humans and animals.
    Vaupel DB; Cone EJ; Johnson RE; Su TP
    J Pharmacol Exp Ther; 1990 Jan; 252(1):225-34. PubMed ID: 2153801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of specific opioid receptor agonists on rat pup isolation calls.
    Carden SE; Barr GA; Hofer MA
    Brain Res Dev Brain Res; 1991 Sep; 62(1):17-22. PubMed ID: 1662121
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of supraspinal mu- and delta-opioid receptors to antinociception in the rat.
    Miaskowski C; Taiwo YO; Levine JD
    Eur J Pharmacol; 1991 Dec; 205(3):247-52. PubMed ID: 1667910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Body temperature response profiles for selective mu, delta and kappa opioid agonists in restrained and unrestrained rats.
    Spencer RL; Hruby VJ; Burks TF
    J Pharmacol Exp Ther; 1988 Jul; 246(1):92-101. PubMed ID: 2839673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selective kappa antagonist properties of nor-binaltorphimine in the rat MES seizure model.
    Tortella FC; Echevarria E; Lipkowski AW; Takemori AE; Portoghese PS; Holaday JW
    Life Sci; 1989; 44(10):661-5. PubMed ID: 2538689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential regulation of the human kappa opioid receptor by agonists: etorphine and levorphanol reduced dynorphin A- and U50,488H-induced internalization and phosphorylation.
    Li JG; Zhang F; Jin XL; Liu-Chen LY
    J Pharmacol Exp Ther; 2003 May; 305(2):531-40. PubMed ID: 12606694
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of microinjections of mu and kappa receptor agonists into the dorsal periaqueductal gray of rats submitted to the plus maze test.
    Motta V; Penha K; Brandão ML
    Psychopharmacology (Berl); 1995 Aug; 120(4):470-4. PubMed ID: 8539329
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discriminative stimulus properties of U50,488 and morphine: effects of training dose on stimulus substitution patterns produced by mu and kappa opioid agonists.
    Picker MJ; Doty P; Negus SS; Mattox SR; Dykstra LA
    J Pharmacol Exp Ther; 1990 Jul; 254(1):13-22. PubMed ID: 2164087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Opioid receptor subtypes involved in the central inhibition of urinary bladder motility.
    Dray A; Metsch R
    Eur J Pharmacol; 1984 Sep; 104(1-2):47-53. PubMed ID: 6094211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting actions of intrathecal U50,488H, morphine, or [D-Pen2, D-Pen5] enkephalin or intravenous U50,488H on the visceromotor response to colorectal distension in the rat.
    Harada Y; Nishioka K; Kitahata LM; Nakatani K; Collins JG
    Anesthesiology; 1995 Aug; 83(2):336-43. PubMed ID: 7631956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of the effects of mu, delta and kappa opioid agonists on 3H-dopamine uptake in rat striatum and nucleus accumbens.
    Das D; Rogers J; Michael-Titus AT
    Neuropharmacology; 1994 Feb; 33(2):221-6. PubMed ID: 8035907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential involvement of ventral tegmental mu, delta and kappa opioid receptors in modulation of basal mesolimbic dopamine release: in vivo microdialysis studies.
    Devine DP; Leone P; Pocock D; Wise RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1236-46. PubMed ID: 7690399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.