These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 28250213)
21. Characterization of SUMO-conjugating enzyme mutants in Schizosaccharomyces pombe identifies a dominant-negative allele that severely reduces SUMO conjugation. Ho JC; Watts FZ Biochem J; 2003 May; 372(Pt 1):97-104. PubMed ID: 12597774 [TBL] [Abstract][Full Text] [Related]
22. Progress of small ubiquitin-related modifiers in kidney diseases. Li O; Ma Q; Li F; Cai GY; Chen XM; Hong Q Chin Med J (Engl); 2019 Feb; 132(4):466-473. PubMed ID: 30707172 [TBL] [Abstract][Full Text] [Related]
23. Proteins with two SUMO-like domains in chromatin-associated complexes: the RENi (Rad60-Esc2-NIP45) family. Novatchkova M; Bachmair A; Eisenhaber B; Eisenhaber F BMC Bioinformatics; 2005 Feb; 6():22. PubMed ID: 15698469 [TBL] [Abstract][Full Text] [Related]
24. The S. pombe translation initiation factor eIF4G is Sumoylated and associates with the SUMO protease Ulp2. Jongjitwimol J; Feng M; Zhou L; Wilkinson O; Small L; Baldock R; Taylor DL; Smith D; Bowler LD; Morley SJ; Watts FZ PLoS One; 2014; 9(5):e94182. PubMed ID: 24818994 [TBL] [Abstract][Full Text] [Related]
25. SUMO proteomics to decipher the SUMO-modified proteome regulated by various diseases. Yang W; Paschen W Proteomics; 2015 Mar; 15(5-6):1181-91. PubMed ID: 25236368 [TBL] [Abstract][Full Text] [Related]
26. SUMO: a history of modification. Hay RT Mol Cell; 2005 Apr; 18(1):1-12. PubMed ID: 15808504 [TBL] [Abstract][Full Text] [Related]
27. SUMOylation by a stress-specific small ubiquitin-like modifier E2 conjugase is essential for survival of Chlamydomonas reinhardtii under stress conditions. Knobbe AR; Horken KM; Plucinak TM; Balassa E; Cerutti H; Weeks DP Plant Physiol; 2015 Mar; 167(3):753-65. PubMed ID: 25614063 [TBL] [Abstract][Full Text] [Related]
28. Purification of SUMO Conjugates from Arabidopsis for Mass Spectrometry Analysis. Rytz TC; Miller MJ; Vierstra RD Methods Mol Biol; 2016; 1475():257-81. PubMed ID: 27631811 [TBL] [Abstract][Full Text] [Related]
30. The Ubiquitin-Like SUMO System and Heart Function: From Development to Disease. Mendler L; Braun T; Müller S Circ Res; 2016 Jan; 118(1):132-44. PubMed ID: 26837744 [TBL] [Abstract][Full Text] [Related]
31. The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. Békés M; Prudden J; Srikumar T; Raught B; Boddy MN; Salvesen GS J Biol Chem; 2011 Mar; 286(12):10238-47. PubMed ID: 21247896 [TBL] [Abstract][Full Text] [Related]
32. MS-based strategies for identification of protein SUMOylation modification. Sheng Z; Wang X; Ma Y; Zhang D; Yang Y; Zhang P; Zhu H; Xu N; Liang S Electrophoresis; 2019 Nov; 40(21):2877-2887. PubMed ID: 31216068 [TBL] [Abstract][Full Text] [Related]
33. The strategies for identification and quantification of SUMOylation. Zhang Y; Li Y; Tang B; Zhang CY Chem Commun (Camb); 2017 Jun; 53(52):6989-6998. PubMed ID: 28589199 [TBL] [Abstract][Full Text] [Related]
35. Analysis of Histone Deacetylases Sumoylation by Immunoprecipitation Techniques. Wagner T; Godmann M; Heinzel T Methods Mol Biol; 2017; 1510():339-351. PubMed ID: 27761833 [TBL] [Abstract][Full Text] [Related]
36. Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2. Marcos-Villar L; Campagna M; Lopitz-Otsoa F; Gallego P; González-Santamaría J; González D; Rodriguez MS; Rivas C J Gen Virol; 2011 Jan; 92(Pt 1):188-94. PubMed ID: 20881090 [TBL] [Abstract][Full Text] [Related]
37. Identification of SUMO targets through in vitro expression cloning. Gocke CB; Yu H Methods Mol Biol; 2009; 497():51-61. PubMed ID: 19107410 [TBL] [Abstract][Full Text] [Related]
38. Assessing the Role of Paralog-Specific Sumoylation of HDAC1. Citro S; Chiocca S Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832 [TBL] [Abstract][Full Text] [Related]