These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 28250373)

  • 1. Potentiality of Soybean Proteomics in Untying the Mechanism of Flood and Drought Stress Tolerance.
    Hossain Z; Komatsu S
    Proteomes; 2014 Mar; 2(1):107-127. PubMed ID: 28250373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soybean proteomics.
    Hossain Z; Komatsu S
    Methods Mol Biol; 2014; 1072():315-31. PubMed ID: 24136532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean.
    Wang X; Komatsu S
    J Proteomics; 2018 Feb; 172():201-215. PubMed ID: 29133124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean.
    Wang X; Komatsu S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomics unravel the regulating role of salicylic acid in soybean under yield limiting drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    Plant Physiol Biochem; 2018 Sep; 130():529-541. PubMed ID: 30098585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the soybean R2R3-MYB transcription factor GmMYB81 and its functional roles under abiotic stresses.
    Bian S; Jin D; Sun G; Shan B; Zhou H; Wang J; Zhai L; Li X
    Gene; 2020 Aug; 753():144803. PubMed ID: 32446917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicago truncatula and Glycine max: Different Drought Tolerance and Similar Local Response of the Root Nodule Proteome.
    Gil-Quintana E; Lyon D; Staudinger C; Wienkoop S; González EM
    J Proteome Res; 2015 Dec; 14(12):5240-51. PubMed ID: 26503705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.
    Kosová K; Vítámvás P; Urban MO; Klíma M; Roy A; Prášil IT
    Int J Mol Sci; 2015 Sep; 16(9):20913-42. PubMed ID: 26340626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic analysis reveals the effects of melatonin on soybean root tips under flooding stress.
    Wang X; Li F; Chen Z; Yang B; Komatsu S; Zhou S
    J Proteomics; 2021 Feb; 232():104064. PubMed ID: 33276190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf Proteome Analysis Reveals Prospective Drought and Heat Stress Response Mechanisms in Soybean.
    Das A; Eldakak M; Paudel B; Kim DW; Hemmati H; Basu C; Rohila JS
    Biomed Res Int; 2016; 2016():6021047. PubMed ID: 27034942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-specific proteomics of soybean seedlings under flooding and drought stresses.
    Wang X; Khodadadi E; Fakheri B; Komatsu S
    J Proteomics; 2017 Jun; 162():62-72. PubMed ID: 28435105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.
    Wang X; Oh M; Sakata K; Komatsu S
    J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Proteomic and Morpho-Physiological Analyses of Maize Wild-Type Vp16 and Mutant vp16 Germinating Seed Responses to PEG-Induced Drought Stress.
    Liu S; Zenda T; Dong A; Yang Y; Liu X; Wang Y; Li J; Tao Y; Duan H
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics for abiotic stresses in legumes: present status and future directions.
    Jan N; Rather AM; John R; Chaturvedi P; Ghatak A; Weckwerth W; Zargar SM; Mir RA; Khan MA; Mir RR
    Crit Rev Biotechnol; 2023 Mar; 43(2):171-190. PubMed ID: 35109728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating omic approaches for abiotic stress tolerance in soybean.
    Deshmukh R; Sonah H; Patil G; Chen W; Prince S; Mutava R; Vuong T; Valliyodan B; Nguyen HT
    Front Plant Sci; 2014; 5():244. PubMed ID: 24917870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-iron oxide accelerates growth, yield, and quality of
    Dola DB; Mannan MA; Sarker U; Mamun MAA; Islam T; Ercisli S; Saleem MH; Ali B; Pop OL; Marc RA
    Front Plant Sci; 2022; 13():992535. PubMed ID: 36160973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.
    Ramalingam A; Kudapa H; Pazhamala LT; Weckwerth W; Varshney RK
    Front Plant Sci; 2015; 6():1116. PubMed ID: 26734026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress.
    Mutava RN; Prince SJK; Syed NH; Song L; Valliyodan B; Chen W; Nguyen HT
    Plant Physiol Biochem; 2015 Jan; 86():109-120. PubMed ID: 25438143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salicylic acid mediated growth, physiological and proteomic responses in two wheat varieties under drought stress.
    Sharma M; Gupta SK; Majumder B; Maurya VK; Deeba F; Alam A; Pandey V
    J Proteomics; 2017 Jun; 163():28-51. PubMed ID: 28511789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.