These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 28250694)
1. On approximating the modified Bessel function of the second kind. Yang ZH; Chu YM J Inequal Appl; 2017; 2017(1):41. PubMed ID: 28250694 [TBL] [Abstract][Full Text] [Related]
2. Monotonicity of the ratio of modified Bessel functions of the first kind with applications. Yang ZH; Zheng SZ J Inequal Appl; 2018; 2018(1):57. PubMed ID: 29568211 [TBL] [Abstract][Full Text] [Related]
3. Amos-type bounds for modified Bessel function ratios. Hornik K; Grün B J Math Anal Appl; 2013 Dec; 408(1):91-101. PubMed ID: 24926105 [TBL] [Abstract][Full Text] [Related]
4. Monotonicity rule for the quotient of two functions and its application. Yang ZH; Qian WM; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):106. PubMed ID: 28553056 [TBL] [Abstract][Full Text] [Related]
5. Inequalities on an extended Bessel function. Ali RM; Lee SK; Mondal SR J Inequal Appl; 2018; 2018(1):66. PubMed ID: 29606843 [TBL] [Abstract][Full Text] [Related]
6. An accurate approximation formula for gamma function. Yang ZH; Tian JF J Inequal Appl; 2018; 2018(1):56. PubMed ID: 29540975 [TBL] [Abstract][Full Text] [Related]
7. Optimal inequalities for bounding Toader mean by arithmetic and quadratic means. Zhao TH; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):26. PubMed ID: 28190939 [TBL] [Abstract][Full Text] [Related]
8. On rational bounds for the gamma function. Yang ZH; Qian WM; Chu YM; Zhang W J Inequal Appl; 2017; 2017(1):210. PubMed ID: 28955149 [TBL] [Abstract][Full Text] [Related]
9. Optimal convex combination bounds of geometric and Neuman means for Toader-type mean. Yang YY; Qian WM J Inequal Appl; 2017; 2017(1):201. PubMed ID: 28932099 [TBL] [Abstract][Full Text] [Related]
10. Orthogonality, Lommel integrals and cross product zeros of linear combinations of Bessel functions. Ziener CH; Kurz FT; Buschle LR; Kampf T Springerplus; 2015; 4():390. PubMed ID: 26251774 [TBL] [Abstract][Full Text] [Related]
11. Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean. Ding Q; Zhao T J Inequal Appl; 2017; 2017(1):102. PubMed ID: 28539752 [TBL] [Abstract][Full Text] [Related]
12. Monotonicity, convexity, and inequalities for the generalized elliptic integrals. Huang T; Tan S; Zhang X J Inequal Appl; 2017; 2017(1):278. PubMed ID: 29170610 [TBL] [Abstract][Full Text] [Related]
13. On maximum likelihood estimation of the concentration parameter of von Mises-Fisher distributions. Hornik K; Grün B Comput Stat; 2014; 29(5):945-957. PubMed ID: 25309045 [TBL] [Abstract][Full Text] [Related]
14. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means. Chen JJ; Lei JJ; Long BY J Inequal Appl; 2017; 2017(1):251. PubMed ID: 29070934 [TBL] [Abstract][Full Text] [Related]
15. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. Qian WM; Chu YM J Inequal Appl; 2017; 2017(1):274. PubMed ID: 29151708 [TBL] [Abstract][Full Text] [Related]
16. A kind of system of multivariate variational inequalities and the existence theorem of solutions. Tang Y; Guan J; Xu Y; Su Y J Inequal Appl; 2017; 2017(1):208. PubMed ID: 28943738 [TBL] [Abstract][Full Text] [Related]
17. Texture analysis using Horadam polynomial coefficient estimate for the class of Sakaguchi kind function. Priya H; Sruthakeerthi B Sci Rep; 2023 Sep; 13(1):14436. PubMed ID: 37660201 [TBL] [Abstract][Full Text] [Related]
18. Lower bounds for the low-rank matrix approximation. Li J; Liu Z; Li G J Inequal Appl; 2017; 2017(1):288. PubMed ID: 29200797 [TBL] [Abstract][Full Text] [Related]
19. On Kedlaya-type inequalities for weighted means. Páles Z; Pasteczka P J Inequal Appl; 2018; 2018(1):99. PubMed ID: 29720847 [TBL] [Abstract][Full Text] [Related]
20. Sharp Smith's bounds for the gamma function. Li XQ; Liu ZM; Yang ZH; Zheng SZ J Inequal Appl; 2018; 2018(1):27. PubMed ID: 29568209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]